train / chat.py
luohoa97's picture
Create chat.py
d1cb6f6 verified
import os
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
import torch
from torch.utils.data import Dataset
# Initialize model and tokenizer as global variables
model = None
tokenizer = None
# Dictionary to store user instructions for future responses
user_instructions = {}
# Dummy dataset class for user feedback
class FeedbackDataset(Dataset):
def __init__(self, input_texts, target_texts):
self.input_texts = input_texts
self.target_texts = target_texts
def __len__(self):
return len(self.input_texts)
def __getitem__(self, idx):
inputs = tokenizer.encode(self.input_texts[idx], return_tensors="pt").squeeze()
targets = tokenizer.encode(self.target_texts[idx], return_tensors="pt").squeeze()
return {"input_ids": inputs, "labels": targets}
def load_model(model_name_or_path):
global model, tokenizer
st.write(f"Loading model from {model_name_or_path}...")
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
st.success("Model loaded successfully!")
def generate_response(input_text):
# Ensure model and tokenizer are loaded
if model is None or tokenizer is None:
st.error("Model is not loaded. Please load a model first.")
return ""
# Check if there's a user-defined response
if input_text in user_instructions:
return user_instructions[input_text]
# Encode input text
inputs = tokenizer.encode(input_text, return_tensors="pt")
# Generate response using the model
with torch.no_grad():
outputs = model.generate(
inputs, max_length=100, num_return_sequences=1, do_sample=True, top_k=50, top_p=0.95
)
# Decode and return the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def train_on_feedback(input_text, correct_response):
# Prepare dataset
dataset = FeedbackDataset([input_text], [correct_response])
# Training arguments
training_args = TrainingArguments(
output_dir="./feedback_model",
num_train_epochs=1,
per_device_train_batch_size=1,
learning_rate=1e-5,
logging_dir='./logs',
logging_steps=10,
save_steps=100
)
# Trainer for the feedback loop
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
)
# Train model on the feedback
trainer.train()
def chat_interface():
st.title("πŸ€– Chat with AI")
# Input for model name or path
model_name_or_path = st.text_input("Enter model name or local path:", "gpt2")
# Button to load the model
if st.button("Load Model"):
load_model(model_name_or_path)
st.write("---")
# Chat input
input_text = st.text_input("You:")
if st.button("Send"):
response = generate_response(input_text)
st.write("AI:", response)
# Feedback section
feedback = st.radio("Was this response helpful?", ("Yes", "No"))
if feedback == "No":
correct_response = st.text_input("What should the AI have said?")
if st.button("Submit Feedback"):
# Train model on feedback
train_on_feedback(input_text, correct_response)
st.success("Feedback recorded. AI will improve based on this feedback.")
# Run chat interface
if __name__ == "__main__":
chat_interface()