Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from torch.utils.data import Dataset, DataLoader
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
|
10 |
+
# Dataset class for PyTorch
|
11 |
+
class TextDataset(Dataset):
|
12 |
+
def __init__(self, encodings, labels):
|
13 |
+
self.encodings = encodings
|
14 |
+
self.labels = labels
|
15 |
+
|
16 |
+
def __getitem__(self, idx):
|
17 |
+
# Return input_ids, attention_mask, and labels for each item
|
18 |
+
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
19 |
+
item['labels'] = torch.tensor(self.labels[idx]) # Adding labels for loss calculation
|
20 |
+
return item
|
21 |
+
|
22 |
+
def __len__(self):
|
23 |
+
return len(self.labels)
|
24 |
+
|
25 |
+
# Function to load configuration
|
26 |
+
def load_config(config_path='config.json'):
|
27 |
+
with open(config_path, 'r') as f:
|
28 |
+
config = json.load(f)
|
29 |
+
return config
|
30 |
+
|
31 |
+
# Main function
|
32 |
+
def main():
|
33 |
+
st.title("CSV Data Processing and Model Training π§ ")
|
34 |
+
|
35 |
+
# Load configuration
|
36 |
+
config = load_config()
|
37 |
+
|
38 |
+
# Upload multiple CSV files
|
39 |
+
uploaded_files = st.file_uploader("Upload CSV files", accept_multiple_files=True, type="csv")
|
40 |
+
|
41 |
+
if uploaded_files:
|
42 |
+
combined_texts = []
|
43 |
+
|
44 |
+
# Process each uploaded CSV file
|
45 |
+
for uploaded_file in uploaded_files:
|
46 |
+
df = pd.read_csv(uploaded_file)
|
47 |
+
|
48 |
+
# Combine all columns into a single text string for each row
|
49 |
+
combined_texts.extend(df.astype(str).agg(' '.join, axis=1))
|
50 |
+
|
51 |
+
# Check the combined text
|
52 |
+
st.write("Combined text for training:", combined_texts[:5]) # Show first 5 for verification
|
53 |
+
|
54 |
+
# Ask the user if they want to load an existing model or train a new one
|
55 |
+
use_existing_model = st.checkbox("Load an existing local model?", value=False)
|
56 |
+
|
57 |
+
if use_existing_model:
|
58 |
+
# Allow the user to select a local model directory
|
59 |
+
model_path = st.text_input("Enter the path to the local model directory:", value="")
|
60 |
+
if model_path and os.path.exists(model_path):
|
61 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
62 |
+
st.write(f"Loaded model from {model_path} successfully! π")
|
63 |
+
else:
|
64 |
+
st.warning("Please provide a valid model directory path.")
|
65 |
+
return
|
66 |
+
else:
|
67 |
+
# Initialize a new model
|
68 |
+
model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
69 |
+
|
70 |
+
# Initialize tokenizer
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
72 |
+
|
73 |
+
# Tokenize combined text data
|
74 |
+
inputs = tokenizer(combined_texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
75 |
+
|
76 |
+
# Create dummy labels (e.g., 0s for all entries)
|
77 |
+
labels = [0] * len(combined_texts) # Dummy labels for all data
|
78 |
+
|
79 |
+
# Split data into training and validation sets
|
80 |
+
train_inputs, val_inputs, train_labels, val_labels = train_test_split(
|
81 |
+
inputs['input_ids'], labels, test_size=0.2, random_state=42
|
82 |
+
)
|
83 |
+
|
84 |
+
# Prepare datasets
|
85 |
+
train_dataset = TextDataset(encodings={'input_ids': train_inputs}, labels=train_labels)
|
86 |
+
val_dataset = TextDataset(encodings={'input_ids': val_inputs}, labels=val_labels)
|
87 |
+
|
88 |
+
# Determine number of threads from config
|
89 |
+
num_workers = config.get('num_workers', 4)
|
90 |
+
|
91 |
+
# Set up DataLoaders
|
92 |
+
train_dataloader = DataLoader(train_dataset, batch_size=8, num_workers=num_workers)
|
93 |
+
val_dataloader = DataLoader(val_dataset, batch_size=8, num_workers=num_workers)
|
94 |
+
|
95 |
+
# Training arguments
|
96 |
+
training_args = TrainingArguments(
|
97 |
+
output_dir='./results', # output directory
|
98 |
+
num_train_epochs=1, # total number of training epochs
|
99 |
+
per_device_train_batch_size=8, # batch size per device during training
|
100 |
+
per_device_eval_batch_size=8, # batch size for evaluation
|
101 |
+
warmup_steps=500, # number of warmup steps for learning rate scheduler
|
102 |
+
weight_decay=0.01, # strength of weight decay
|
103 |
+
logging_dir='./logs', # directory for storing logs
|
104 |
+
logging_steps=10,
|
105 |
+
evaluation_strategy="epoch"
|
106 |
+
)
|
107 |
+
|
108 |
+
# Initialize Trainer
|
109 |
+
trainer = Trainer(
|
110 |
+
model=model, # the instantiated π€ Transformers model to be trained
|
111 |
+
args=training_args, # training arguments, defined above
|
112 |
+
train_dataset=train_dataset, # training dataset
|
113 |
+
eval_dataset=val_dataset # evaluation dataset
|
114 |
+
)
|
115 |
+
|
116 |
+
# Start training
|
117 |
+
trainer.train()
|
118 |
+
|
119 |
+
# Ask the user for a directory to save the trained model
|
120 |
+
save_path = st.text_input("Enter the directory path to save the trained model:", value="./trained_model")
|
121 |
+
|
122 |
+
if save_path:
|
123 |
+
os.makedirs(save_path, exist_ok=True)
|
124 |
+
model.save_pretrained(save_path)
|
125 |
+
tokenizer.save_pretrained(save_path)
|
126 |
+
st.write(f"Model saved successfully to {save_path}! π")
|
127 |
+
else:
|
128 |
+
st.warning("Please provide a valid directory path to save the model.")
|
129 |
+
|
130 |
+
# Notify user of training completion
|
131 |
+
st.success("Training completed successfully! π")
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
main()
|