File size: 2,212 Bytes
084fe8e acb3380 084fe8e acb3380 084fe8e acb3380 084fe8e acb3380 084fe8e acb3380 084fe8e acb3380 084fe8e acb3380 084fe8e acb3380 084fe8e acb3380 084fe8e acb3380 084fe8e acb3380 084fe8e acb3380 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import json
import os
from typing import Any, Dict, Optional
from huggingface_hub import InferenceClient
from ctm.messengers.messenger_base import BaseMessenger
from ctm.processors.processor_base import BaseProcessor
@BaseProcessor.register_processor("bart_text_summary_processor")
class BartTextSummaryProcessor(BaseProcessor):
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(
*args, **kwargs
) # Ensure base class is properly initialized
def init_executor(self) -> None:
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN environment variable is not set")
self.executor = InferenceClient(token=hf_token)
def init_messenger(self) -> None:
self.messenger = BaseMessenger("bart_text_summ_messenger")
def init_task_info(self) -> None:
pass
def update_info(self, feedback: str) -> None:
self.messenger.add_assistant_message(feedback)
def ask_info(
self, text: Optional[str] = None, *args: Any, **kwargs: Any
) -> str | Any:
if text is None:
raise ValueError("Context must not be None")
if self.messenger.check_iter_round_num() == 0:
self.messenger.add_user_message(text)
response: Dict[str, Any] = json.loads(
self.executor.post(
json={"inputs": self.messenger.get_messages()},
model="facebook/bart-large-cnn",
)
)[0]
return response["summary_text"]
if __name__ == "__main__":
processor = BartTextSummaryProcessor()
image_path = "../ctmai-test1.png"
text = (
"In a shocking turn of events, Hugging Face has released a new version of Transformers "
"that brings several enhancements and bug fixes. Users are thrilled with the improvements "
"and are finding the new version to be significantly better than the previous one. "
"The Hugging Face team is thankful for the community's support and continues to work "
"towards making the library the best it can be."
)
summary = processor.ask_info(context=text, image_path=image_path)
print(summary)
|