File size: 9,942 Bytes
acb3380
 
084fe8e
acb3380
 
 
 
084fe8e
 
 
acb3380
 
 
084fe8e
 
acb3380
 
 
 
 
 
084fe8e
 
acb3380
 
084fe8e
 
 
 
 
 
 
 
 
 
 
 
 
acb3380
 
 
 
 
 
 
 
 
 
084fe8e
acb3380
084fe8e
acb3380
 
 
 
 
 
084fe8e
 
 
 
 
 
 
acb3380
 
084fe8e
acb3380
084fe8e
 
 
 
 
acb3380
 
 
 
084fe8e
 
 
 
 
 
 
acb3380
 
 
 
 
084fe8e
 
 
 
 
acb3380
 
 
 
 
 
 
 
084fe8e
acb3380
 
 
 
 
 
 
 
 
084fe8e
 
 
acb3380
084fe8e
 
 
 
acb3380
 
 
 
 
 
084fe8e
acb3380
 
084fe8e
 
 
 
 
 
 
acb3380
 
 
084fe8e
acb3380
 
 
 
084fe8e
acb3380
 
084fe8e
 
 
 
 
 
acb3380
084fe8e
 
 
 
 
acb3380
 
 
 
 
 
084fe8e
 
 
acb3380
084fe8e
acb3380
 
 
084fe8e
acb3380
 
 
 
 
 
 
 
 
084fe8e
 
 
acb3380
 
 
 
 
 
084fe8e
acb3380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
084fe8e
 
 
acb3380
 
 
 
084fe8e
 
 
 
 
 
acb3380
 
 
 
 
 
084fe8e
 
 
 
 
acb3380
 
084fe8e
acb3380
 
 
 
 
 
 
084fe8e
acb3380
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import concurrent.futures
from collections import defaultdict
from typing import Any, Dict, List, Optional, Set, Tuple

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

from ctm.configs import BaseConsciousnessTuringMachineConfig
from ctm.processors import BaseProcessor
from ctm.supervisors import BaseSupervisor


class BaseConsciousnessTuringMachine(object):
    def __init__(self, ctm_name: Optional[str] = None) -> None:
        super().__init__()
        if ctm_name:
            self.config = BaseConsciousnessTuringMachineConfig.from_ctm(
                ctm_name
            )
        else:
            self.config = BaseConsciousnessTuringMachineConfig()
        self.processor_list: List[Dict[str, Any]] = []
        self.processor_group_map: Dict[str, str] = defaultdict(str)
        self.load_ctm()

    def __call__(
        self,
        query: str,
        text: Optional[str] = None,
        image: Optional[Any] = None,
        audio: Optional[Any] = None,
        video_frames: Optional[Any] = None,
    ) -> Tuple[str, float]:
        return self.forward(query, text, image, audio, video_frames)

    def add_processor(
        self, processor_name: str, group_name: Optional[str] = 'default_group'
    ) -> None:
        processor_instance = BaseProcessor(processor_name)
        self.processor_list.append(
            {
                "processor_name": processor_name,
                "processor_instance": processor_instance,
            }
        )
        if group_name:
            self.processor_group_map[processor_name] = group_name

    def add_supervisor(self, supervisor_name: str) -> None:
        supervisor_instance = BaseSupervisor(supervisor_name)
        self.supervisor: Dict[str, Any] = {
            "supervisor_name": supervisor_name,
            "supervisor_instance": supervisor_instance,
        }

    @staticmethod
    def ask_processor(
        processor: Dict[str, Any],
        query: str,
        text: Optional[str] = None,
        image: Optional[Any] = None,
        audio: Optional[Any] = None,
        video_frames: Optional[Any] = None,
    ) -> Dict[str, Any]:
        processor_instance = processor["processor_instance"]
        processor_name = processor["processor_name"]
        print(processor_name)
        gist, score = processor_instance.ask(
            query=query,
            text=text,
            image=image,
            audio=audio,
            video_frames=video_frames,
        )
        return {"name": processor_name, "gist": gist, "score": score}

    def ask_processors(
        self,
        query: str,
        text: Optional[str] = None,
        image: Optional[Any] = None,
        audio: Optional[Any] = None,
        video_frames: Optional[Any] = None,
    ) -> Dict[str, Dict[str, Any]]:
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [
                executor.submit(
                    self.ask_processor,
                    processor,
                    query,
                    text,
                    image,
                    audio,
                    video_frames,
                )
                for processor in self.processor_list
            ]
            results = [
                future.result()
                for future in concurrent.futures.as_completed(futures)
            ]

        output: Dict[str, Dict[str, Any]] = {}
        for result in results:
            output[result["name"]] = {
                "gist": result["gist"],
                "score": result["score"],
            }

        assert len(output) == len(self.processor_list)
        return output

    def uptree_competition(
        self, processor_output: Dict[str, Dict[str, Any]]
    ) -> Dict[str, Any]:
        # Unpack processor outputs into lists for easier processing
        gists: List[str] = []
        scores: List[float] = []
        names: List[str] = []

        for name, info in processor_output.items():
            gists.append(info["gist"])
            scores.append(info["score"])
            names.append(name)

        # Determine the unique group for each processor
        unique_groups: Set[str] = set(self.processor_group_map.values())

        # Prepare to track the best processor by group
        best_processor_by_group: Dict[str, Tuple[Optional[str], float]] = {
            group: (
                None,
                float("-inf"),
            )  # Use negative infinity as the initial lowest score
            for group in unique_groups
        }

        # Iterate through processors to find the best in each group
        for name, score in zip(names, scores):
            group = self.processor_group_map.get(name, "")
            if score > best_processor_by_group[group][1]:
                best_processor_by_group[group] = (name, score)

        # Select the overall best across groups
        best_overall: Tuple[Optional[str], float] = max(
            best_processor_by_group.values(), key=lambda x: x[1]
        )
        best_name: Optional[str] = best_overall[0]

        if best_name is None:
            raise ValueError(
                "No valid processor found."
            )  # Ensure best_name is not None

        index: int = names.index(
            best_name
        )  # Now best_name is guaranteed to be not None

        winning_info: Dict[str, Any] = {
            "name": best_name,
            "gist": gists[index],
            "score": scores[index],
        }
        return winning_info

    def ask_supervisor(
        self, query: str, processor_info: Dict[str, Any]
    ) -> Tuple[str, float]:
        final_answer, score = self.supervisor["supervisor_instance"].ask(
            query, processor_info["gist"]
        )
        return final_answer, score

    def downtree_broadcast(self, winning_output: Dict[str, str]) -> None:
        winning_processor_name = winning_output["name"]
        winning_processor_gist = winning_output["gist"]
        for processor in self.processor_list:
            if processor["processor_name"] != winning_processor_name:
                processor["processor_instance"].update_info(
                    winning_processor_gist
                )
        return

    def calc_processor_sim(
        self, processor_output: Dict[str, Dict[str, str]]
    ) -> Any:
        processor_gists = [info["gist"] for info in processor_output.values()]
        tfidf_vectorizer = TfidfVectorizer()
        tfidf_matrix = tfidf_vectorizer.fit_transform(processor_gists)
        cosine_sim = cosine_similarity(tfidf_matrix, tfidf_matrix)
        return cosine_sim

    def link_form(self, processor_output: Dict[str, Dict[str, str]]) -> None:
        sim = self.calc_processor_sim(processor_output)
        print(sim)
        # iterate on each sim pair
        # if sim > threshold, then link the two processors by combining them into the same group
        link_threshold = 0.5
        for i in range(len(sim)):
            for j in range(i + 1, len(sim)):
                if sim[i][j] > 0.5:
                    processor1_name = list(processor_output.keys())[i]
                    processor2_name = list(processor_output.keys())[j]
                    # choose the group that includes more processors
                    # processor_group_map is a dict with processor_name as key and group_name as value
                    group1 = self.processor_group_map[processor1_name]
                    group2 = self.processor_group_map[processor2_name]
                    # calculate the number of processors in each group
                    group1_count = sum(
                        [
                            1
                            for group in self.processor_group_map.values()
                            if group == group1
                        ]
                    )
                    group2_count = sum(
                        [
                            1
                            for group in self.processor_group_map.values()
                            if group == group2
                        ]
                    )
                    # choose the group with more processors
                    group_name = (
                        group1 if group1_count > group2_count else group2
                    )
                    self.processor_group_map[processor1_name] = group_name
                    self.processor_group_map[processor2_name] = group_name
        return

    def processor_fuse(
        self, infos: List[str], scores: List[float]
    ) -> Tuple[List[str], List[float]]:
        return infos, scores

    def forward(
        self,
        query: str,
        text: Optional[str] = None,
        image: Optional[Any] = None,
        audio: Optional[Any] = None,
        video_frames: Optional[Any] = None,
    ) -> Tuple[str, float]:
        answer_threshold = 0.5
        max_iter = 3

        for i in range(max_iter):
            print("start the {}-th iteration".format(i + 1))
            processor_output = self.ask_processors(
                query=query,
                text=text,
                image=image,
                audio=audio,
                video_frames=video_frames,
            )
            winning_output = self.uptree_competition(processor_output)
            answer, score = self.ask_supervisor(query, winning_output)
            if score > answer_threshold:
                break
            else:
                self.downtree_broadcast(winning_output)
                self.link_form(processor_output)
        return answer, score

    def load_ctm(self) -> None:
        for (
            group_name,
            processor_list,
        ) in self.config.groups_of_processors.items():
            for processor_name in processor_list:
                self.add_processor(processor_name, group_name=group_name)
        self.add_supervisor(self.config.supervisor)