ctm-space / app.py
Haofei Yu
init version (#7)
dc7c3c1 unverified
raw
history blame
5.08 kB
import os
import gradio as gr
from ctm.ctms.ctm_base import BaseConsciousnessTuringMachine
ctm = BaseConsciousnessTuringMachine()
ctm.add_processor("gpt4_text_emotion_processor", group_name="group_1")
ctm.add_processor("gpt4_text_summary_processor", group_name="group_1")
ctm.add_supervisor("gpt4_supervisor")
DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
def introduction():
with gr.Column(scale=2):
gr.Image(
"images/sotopia.jpg", elem_id="banner-image", show_label=False
)
with gr.Column(scale=5):
gr.Markdown(
"""Consciousness Turing Machine Demo
"""
)
def add_processor(processor_name):
print('add processor ', processor_name)
ctm.add_processor(processor_name)
print(len(ctm.processor_list))
def processor_tab():
with gr.Row() as row:
button1 = gr.Button("Text Emotion Analyzer")
button2 = gr.Button("Text Summary Generator")
invisible_input1 = gr.Textbox(
value="gpt4_text_emotion_processor",
visible=False
)
invisible_input2 = gr.Textbox(
value="gpt4_text_summary_processor",
visible=False
)
button1.click(
fn=add_processor,
inputs=[invisible_input1],
)
button2.click(
fn=add_processor,
inputs=[invisible_input2],
)
def forward(query, content, image, state):
state['question'] = query
ask_processors_output_info, state = ask_processors(query, content, image, state)
uptree_competition_output_info, state = uptree_competition(state)
ask_supervisor_output_info, state = ask_supervisor(state)
ctm.downtree_broadcast(state['winning_output'])
ctm.link_form(state['processor_output'])
return ask_processors_output_info, uptree_competition_output_info, ask_supervisor_output_info, state
def ask_processors(query, content, image, state):
# Simulate processing here
processor_output = ctm.ask_processors(
question=query,
context=content,
image_path=None,
audio_path=None,
video_path=None
)
output_info = ''
for name, info in processor_output.items():
output_info += f"{name}: {info['gist']}\n"
state['processor_output'] = processor_output
return output_info, state
def uptree_competition(state):
winning_output = ctm.uptree_competition(
state['processor_output']
)
state['winning_output'] = winning_output
output_info = 'The winning processor is: {}\nThe winning gist is: {}\n'.format(winning_output['name'], winning_output['gist'])
return output_info, state
def ask_supervisor(state):
question = state['question']
winning_output = state['winning_output']
answer, score = ctm.ask_supervisor(question, winning_output)
output_info = f"The answer to the query \"{question}\" is: {answer}\nThe confidence for answering is: {score}\n"
state['answer'] = answer
state['score'] = score
return output_info, state
def interface_tab():
with gr.Blocks() as interface_tab:
state = gr.State({}) # State to hold and pass values
with gr.Column():
# Inputs
content = gr.Textbox(label="Enter your text here")
query = gr.Textbox(label="Enter your query here")
image = gr.Image(label="Upload your image")
audio = gr.Audio(label="Upload or Record Audio")
video = gr.Video(label="Upload or Record Video")
# Processing buttons
forward_button = gr.Button("Start CTM forward process")
# Outputs
processors_output = gr.Textbox(
label="Processors Output",
visible=True
)
competition_output = gr.Textbox(
label="Up-tree Competition Output",
visible=True
)
supervisor_output = gr.Textbox(
label="Supervisor Output",
visible=True
)
# Set up button to start or continue processing
forward_button.click(
fn=forward,
inputs=[query, content, image, state],
outputs=[processors_output, competition_output, supervisor_output, state]
)
return interface_tab
def main():
with gr.Blocks(
css="""#chat_container {height: 820px; width: 1000px; margin-left: auto; margin-right: auto;}
#chatbot {height: 600px; overflow: auto;}
#create_container {height: 750px; margin-left: 0px; margin-right: 0px;}
#tokenizer_renderer span {white-space: pre-wrap}
"""
) as demo:
with gr.Row():
introduction()
with gr.Row():
processor_tab()
with gr.Row():
interface_tab()
return demo
def start_demo():
demo = main()
if DEPLOYED:
demo.queue(api_open=False).launch(show_api=False)
else:
demo.queue()
demo.launch(share=False, server_name="0.0.0.0")
if __name__ == "__main__":
start_demo()