Haofei Yu commited on
Commit
a9c1d92
1 Parent(s): 65f668d

pre-commit checking (#18)

Browse files

* support pre-commit

* support running

* pre-commit running

* pre-commit running

Files changed (5) hide show
  1. .gitignore +1 -1
  2. .pre-commit-config.yaml +1 -1
  3. app.py +40 -24
  4. ctm/ctms/ctm_base.py +3 -1
  5. requirements.txt +2 -1
.gitignore CHANGED
@@ -157,4 +157,4 @@ cython_debug/
157
  # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
  # and can be added to the global gitignore or merged into this file. For a more nuclear
159
  # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
- #.idea/
 
157
  # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
  # and can be added to the global gitignore or merged into this file. For a more nuclear
159
  # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
.pre-commit-config.yaml CHANGED
@@ -24,4 +24,4 @@ repos:
24
  - repo: https://github.com/kynan/nbstripout
25
  rev: 0.6.0
26
  hooks:
27
- - id: nbstripout
 
24
  - repo: https://github.com/kynan/nbstripout
25
  rev: 0.6.0
26
  hooks:
27
+ - id: nbstripout
app.py CHANGED
@@ -2,8 +2,8 @@ import os
2
  import sys
3
 
4
  import gradio as gr
5
- import sys
6
- sys.path.append('./ctm')
7
  from ctm.ctms.ctm_base import BaseConsciousnessTuringMachine
8
 
9
  ctm = BaseConsciousnessTuringMachine()
@@ -17,27 +17,27 @@ def convert_base64(image_array):
17
  buffer = io.BytesIO()
18
  image.save(buffer, format="PNG")
19
  byte_data = buffer.getvalue()
20
- base64_string = base64.b64encode(byte_data).decode('utf-8')
21
  return base64_string
22
 
23
 
24
  def introduction():
25
  with gr.Column(scale=2):
26
- gr.Image(
27
- "images/CTM-AI.png", elem_id="banner-image", show_label=False
28
- )
29
  with gr.Column(scale=5):
30
  gr.Markdown(
31
  """Consciousness Turing Machine Demo
32
  """
33
  )
34
 
 
35
  def add_processor(processor_name, display_name, state):
36
- print('add processor ', processor_name)
37
  ctm.add_processor(processor_name)
38
  print(ctm.processor_group_map)
39
  print(len(ctm.processor_list))
40
- return display_name + ' (added)'
 
41
 
42
  def processor_tab():
43
  # Categorized model names
@@ -45,14 +45,14 @@ def processor_tab():
45
  "gpt4_text_emotion_processor",
46
  "gpt4_text_summary_processor",
47
  "gpt4_speaker_intent_processor",
48
- "roberta_text_sentiment_processor"
49
  ]
50
  vision_processors = [
51
  "gpt4v_cloth_fashion_processor",
52
  "gpt4v_face_emotion_processor",
53
  "gpt4v_ocr_processor",
54
  "gpt4v_posture",
55
- "gpt4v_scene_location_processor"
56
  ]
57
 
58
  with gr.Blocks():
@@ -60,37 +60,53 @@ def processor_tab():
60
  with gr.Column(scale=1):
61
  gr.Markdown("### Text Processors")
62
  for model_name in text_processors:
63
- display_name = model_name.replace("processor", "").replace("_", " ").title()
 
 
 
 
64
 
65
  button = gr.Button(display_name)
66
- processor_name = gr.Textbox(value=model_name, visible=False)
67
- display_name = gr.Textbox(value=display_name, visible=False)
 
 
 
 
68
  button.click(
69
  fn=add_processor,
70
  inputs=[processor_name, display_name, gr.State()],
71
- outputs=[button]
72
  )
73
 
74
  with gr.Column(scale=1):
75
  gr.Markdown("### Vision Processors")
76
  for model_name in vision_processors:
77
- display_name = model_name.replace("processor", "").replace("_", " ").title()
 
 
 
 
78
 
79
  button = gr.Button(display_name)
80
- processor_name = gr.Textbox(value=model_name, visible=False)
81
- display_name = gr.Textbox(value=display_name, visible=False)
 
 
 
 
82
  button.click(
83
  fn=add_processor,
84
  inputs=[processor_name, display_name, gr.State()],
85
- outputs=[button]
86
  )
87
 
88
 
89
-
90
-
91
  def forward(query, content, image, state):
92
- state['question'] = query
93
- ask_processors_output_info, state = ask_processors(query, content, image, state)
 
 
94
  uptree_competition_output_info, state = uptree_competition(state)
95
  ask_supervisor_output_info, state = ask_supervisor(state)
96
 
@@ -148,8 +164,8 @@ def interface_tab():
148
  text = gr.Textbox(label="Enter your text here")
149
  query = gr.Textbox(label="Enter your query here")
150
  image = gr.Image(label="Upload your image")
151
- #audio = gr.Audio(label="Upload or Record Audio")
152
- #video = gr.Video(label="Upload or Record Video")
153
 
154
  # Processing buttons
155
  forward_button = gr.Button("Start CTM forward process")
 
2
  import sys
3
 
4
  import gradio as gr
5
+
6
+ sys.path.append("./ctm")
7
  from ctm.ctms.ctm_base import BaseConsciousnessTuringMachine
8
 
9
  ctm = BaseConsciousnessTuringMachine()
 
17
  buffer = io.BytesIO()
18
  image.save(buffer, format="PNG")
19
  byte_data = buffer.getvalue()
20
+ base64_string = base64.b64encode(byte_data).decode("utf-8")
21
  return base64_string
22
 
23
 
24
  def introduction():
25
  with gr.Column(scale=2):
26
+ gr.Image("images/CTM-AI.png", elem_id="banner-image", show_label=False)
 
 
27
  with gr.Column(scale=5):
28
  gr.Markdown(
29
  """Consciousness Turing Machine Demo
30
  """
31
  )
32
 
33
+
34
  def add_processor(processor_name, display_name, state):
35
+ print("add processor ", processor_name)
36
  ctm.add_processor(processor_name)
37
  print(ctm.processor_group_map)
38
  print(len(ctm.processor_list))
39
+ return display_name + " (added)"
40
+
41
 
42
  def processor_tab():
43
  # Categorized model names
 
45
  "gpt4_text_emotion_processor",
46
  "gpt4_text_summary_processor",
47
  "gpt4_speaker_intent_processor",
48
+ "roberta_text_sentiment_processor",
49
  ]
50
  vision_processors = [
51
  "gpt4v_cloth_fashion_processor",
52
  "gpt4v_face_emotion_processor",
53
  "gpt4v_ocr_processor",
54
  "gpt4v_posture",
55
+ "gpt4v_scene_location_processor",
56
  ]
57
 
58
  with gr.Blocks():
 
60
  with gr.Column(scale=1):
61
  gr.Markdown("### Text Processors")
62
  for model_name in text_processors:
63
+ display_name = (
64
+ model_name.replace("processor", "")
65
+ .replace("_", " ")
66
+ .title()
67
+ )
68
 
69
  button = gr.Button(display_name)
70
+ processor_name = gr.Textbox(
71
+ value=model_name, visible=False
72
+ )
73
+ display_name = gr.Textbox(
74
+ value=display_name, visible=False
75
+ )
76
  button.click(
77
  fn=add_processor,
78
  inputs=[processor_name, display_name, gr.State()],
79
+ outputs=[button],
80
  )
81
 
82
  with gr.Column(scale=1):
83
  gr.Markdown("### Vision Processors")
84
  for model_name in vision_processors:
85
+ display_name = (
86
+ model_name.replace("processor", "")
87
+ .replace("_", " ")
88
+ .title()
89
+ )
90
 
91
  button = gr.Button(display_name)
92
+ processor_name = gr.Textbox(
93
+ value=model_name, visible=False
94
+ )
95
+ display_name = gr.Textbox(
96
+ value=display_name, visible=False
97
+ )
98
  button.click(
99
  fn=add_processor,
100
  inputs=[processor_name, display_name, gr.State()],
101
+ outputs=[button],
102
  )
103
 
104
 
 
 
105
  def forward(query, content, image, state):
106
+ state["question"] = query
107
+ ask_processors_output_info, state = ask_processors(
108
+ query, content, image, state
109
+ )
110
  uptree_competition_output_info, state = uptree_competition(state)
111
  ask_supervisor_output_info, state = ask_supervisor(state)
112
 
 
164
  text = gr.Textbox(label="Enter your text here")
165
  query = gr.Textbox(label="Enter your query here")
166
  image = gr.Image(label="Upload your image")
167
+ # audio = gr.Audio(label="Upload or Record Audio")
168
+ # video = gr.Video(label="Upload or Record Video")
169
 
170
  # Processing buttons
171
  forward_button = gr.Button("Start CTM forward process")
ctm/ctms/ctm_base.py CHANGED
@@ -207,7 +207,9 @@ class BaseConsciousnessTuringMachine(object):
207
  audio_path=audio_path,
208
  video_path=video_path,
209
  )
210
- import pdb; pdb.set_trace()
 
 
211
  winning_output = self.uptree_competition(processor_output)
212
  answer, score = self.ask_supervisor(question, winning_output)
213
  if score > answer_threshold:
 
207
  audio_path=audio_path,
208
  video_path=video_path,
209
  )
210
+ import pdb
211
+
212
+ pdb.set_trace()
213
  winning_output = self.uptree_competition(processor_output)
214
  answer, score = self.ask_supervisor(question, winning_output)
215
  if score > answer_threshold:
requirements.txt CHANGED
@@ -2,4 +2,5 @@ scikit-learn==1.3.0
2
  huggingface-hub==0.21.4
3
  gradio==4.27.0
4
  gradio_client==0.15.1
5
- openai==1.23.3
 
 
2
  huggingface-hub==0.21.4
3
  gradio==4.27.0
4
  gradio_client==0.15.1
5
+ openai==1.23.3
6
+ pre-commit==3.7.0