Spaces:
Running
Running
File size: 5,870 Bytes
7bb0929 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
#!/usr/bin/env python
import gradio as gr
import os
import re
from PIL import Image
import base64
import time
DESCRIPTION = '''# <a href="https://github.com/THUDM/VisualGLM">VisualGLM</a>'''
MAINTENANCE_NOTICE='Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.\nHint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.'
NOTES = 'This app is adapted from <a href="https://github.com/THUDM/VisualGLM">https://github.com/THUDM/VisualGLM</a>. It would be recommended to check out the repo if you want to see the detail of our model and training process.'
import json
import requests
import base64
URL = os.environ.get("URL")
def process_image(image_prompt):
image = Image.open(image_prompt)
print(f"height:{image.height}, width:{image.width}")
resized_image = image.resize((224, 224), )
timestamp = int(time.time())
file_ext = os.path.splitext(image_prompt)[1]
filename = f"examples/{timestamp}{file_ext}"
resized_image.save(filename)
print(f"temporal filename {filename}")
with open(filename, "rb") as image_file:
encoded_img = str(base64.b64encode(image_file.read()), encoding='utf-8')
os.remove(filename)
return encoded_img
def is_chinese(text):
zh_pattern = re.compile(u'[\u4e00-\u9fa5]+')
return zh_pattern.search(text)
def post(
input_text,
temperature,
top_p,
image_prompt,
result_previous
):
result_text = [(ele[0], ele[1]) for ele in result_previous]
for i in range(len(result_text)-1, -1, -1):
if result_text[i][0] == "":
del result_text[i]
print(f"history {result_text}")
is_zh = is_chinese(input_text)
if image_prompt is None:
print("Image empty")
if is_zh:
result_text.append((input_text, '图片为空!请上传图片并重试。'))
else:
result_text.append((input_text, 'Image empty! Please upload a image and retry.'))
return input_text, result_text
elif input_text == "":
print("Text empty")
result_text.append((input_text, 'Text empty! Please enter text and retry.'))
return "", result_text
headers = {
"Content-Type": "application/json; charset=UTF-8",
"User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36",
}
if image_prompt:
encoded_img = process_image(image_prompt)
else:
encoded_img = None
print('开始请求...')
data = json.dumps({
'text': input_text,
'image_prompt': encoded_img,
'temperature': temperature,
'top_p': top_p,
'history': result_text
})
try:
response = requests.request("POST", URL, headers=headers, data=data, timeout=(60, 100)).json()
except Exception as e:
print("error message", e)
if is_zh:
result_text.append((input_text, '超时!请稍等几分钟再重试。'))
else:
result_text.append((input_text, 'Timeout! Please wait a few minutes and retry.'))
return "", result_text
print('请求完毕...')
answer = str(response['result'])
result_text.append((input_text, answer))
print(result_text)
print('finished')
return "", result_text
def clear_fn(value):
return "", [("", "Hi, What do you want to know about this image?")], None
def clear_fn2(value):
return [("", "Hi, What do you want to know about this image?")]
def main():
gr.close_all()
examples = []
with open("./examples/example_inputs.jsonl") as f:
for line in f:
data = json.loads(line)
examples.append(data)
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown(MAINTENANCE_NOTICE)
with gr.Row():
with gr.Column():
with gr.Group():
input_text = gr.Textbox(label='Input Text', placeholder='Please enter text prompt below and press ENTER.')
with gr.Row():
run_button = gr.Button('Generate')
clear_button = gr.Button('Clear')
image_prompt = gr.Image(type="filepath", label="Image Prompt", value=None)
with gr.Row():
temperature = gr.Slider(maximum=1, value=0.95, minimum=0, label='Temperature')
top_p = gr.Slider(maximum=1, value=0.7, minimum=0, label='Top P')
result_text = gr.components.Chatbot(label='Multi-round conversation History', value=[("", "Hi, What do you want to know about this image?")])
gr_examples = gr.Examples(examples=[[example["text"], example["image"]] for example in examples],
inputs=[input_text, image_prompt],
label="Example Inputs (Click to insert an examplet into the input box)",
examples_per_page=3)
gr.Markdown(NOTES)
print(gr.__version__)
run_button.click(fn=post,inputs=[input_text, temperature, top_p, image_prompt, result_text],
outputs=[input_text, result_text])
input_text.submit(fn=post,inputs=[input_text, temperature, top_p, image_prompt, result_text],
outputs=[input_text, result_text])
clear_button.click(fn=clear_fn, inputs=clear_button, outputs=[input_text, result_text, image_prompt])
image_prompt.change(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
print(gr.__version__)
demo.queue(concurrency_count=10)
demo.launch()
if __name__ == '__main__':
main() |