Spaces:
Running
Running
File size: 8,839 Bytes
5d57406 cff6787 5d57406 ce8627b cff6787 5d57406 6de388e ce8627b 5d57406 5aa60a6 5d57406 cff6787 5d57406 cff6787 5d57406 cff6787 5d57406 cff6787 5d57406 6de388e 5d57406 cff6787 5d57406 cff6787 5d57406 6de388e 5d57406 ce8627b 5d57406 6de388e 5d57406 5aa60a6 cff6787 5d57406 cff6787 5d57406 cff6787 5d57406 5aa60a6 5d57406 5aa60a6 5d57406 ce8627b 5d57406 cff6787 5d57406 cff6787 5d57406 cff6787 ce8627b cff6787 5d57406 ce8627b 5d57406 cff6787 5d57406 cff6787 5d57406 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import re
import pdb
import tempfile
from constants import *
from src.compute import compute_scores
global data_component, filter_component
def validate_model_size(s):
pattern = r'^\d+B$|^-$'
if re.match(pattern, s):
return s
else:
return '-'
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def add_new_eval(
input_file,
model_name_textbox: str,
revision_name_textbox: str,
model_link: str,
model_type: str,
model_size: str,
notes: str,
):
if input_file is None:
return "Error! Empty file!"
else:
model_size = validate_model_size(model_size)
input_file = compute_scores(input_file)
input_data = input_file[1]
input_data = [float(i) for i in input_data]
csv_data = pd.read_csv(CSV_DIR)
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox
name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in csv_data['Model']]
print(name_list)
print(model_name)
assert model_name not in name_list
else:
model_name = revision_name_textbox
model_name_list = csv_data['Model']
name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
if model_link == '':
model_name = model_name # no url
else:
model_name = '[' + model_name + '](' + model_link + ')'
# add new data
new_data = [
model_name,
model_type,
model_size,
input_data[0],
input_data[1],
input_data[2],
input_data[3],
input_data[4],
input_data[5],
input_data[6],
input_data[7],
input_data[8],
input_data[9],
input_data[10],
input_data[11],
input_data[12],
input_data[13],
input_data[14],
input_data[15],
input_data[16],
input_data[17],
input_data[18],
input_data[19],
input_data[20],
input_data[21],
input_data[22],
input_data[23],
input_data[24],
notes,
]
# print(len(new_data), col)
# print(csv_data.loc[col])
# print(model_name, model_type, model_size)
csv_data.loc[col] = new_data
# with open(f'./file/{model_name}.json','w' ,encoding='utf-8') as f:
# json.dump(new_data, f)
csv_data.to_csv(CSV_DIR, index=False)
return 0
def get_baseline_df():
# pdb.set_trace()
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by="Avg. All", ascending=False)
present_columns = MODEL_INFO + checkbox_group.value
df = df[present_columns]
return df
def get_all_df():
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by="Avg. All", ascending=False)
return df
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBORAD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 TempCompass Benchmark", elem_id="video-benchmark-tab-table", id=0):
gr.Markdown(
TABLE_INTRODUCTION
)
# selection for column part:
checkbox_group = gr.CheckboxGroup(
choices=TASK_INFO,
value=AVG_INFO,
label="Select options",
interactive=True,
)
# 创建数据帧组件
data_component = gr.components.Dataframe(
value=get_baseline_df,
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITILE_TYPE,
interactive=False,
visible=True,
)
def on_checkbox_group_change(selected_columns):
# pdb.set_trace()
selected_columns = [item for item in TASK_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = get_all_df()[present_columns]
updated_data = updated_data.sort_values(by=present_columns[1], ascending=False)
updated_headers = present_columns
print(updated_headers)
print([COLUMN_NAMES.index(x) for x in updated_headers])
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
# pdb.set_trace()
return filter_component.constructor_args['value']
# 将复选框组关联到处理函数
checkbox_group.change(fn=on_checkbox_group_change, inputs=checkbox_group, outputs=data_component)
'''
# table 2
with gr.TabItem("📝 About", elem_id="seed-benchmark-tab-table", id=2):
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
'''
# table 3
with gr.TabItem("🚀 Submit here! ", elem_id="seed-benchmark-tab-table", id=3):
# gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name", placeholder="Video-LLaVA-7B"
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name", placeholder="Video-LLaVA-7B"
)
model_link = gr.Textbox(
label="Model Link", placeholder="https://huggingface.co/LanguageBind/Video-LLaVA-7B"
)
model_type = gr.Dropdown(
choices=[
"LLM",
"ImageLLM",
"VideoLLM",
"Other",
],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
model_size = gr.Textbox(
label="Model size", placeholder="7B(Input content format must be 'number+B' or '-', default is '-')"
)
notes = gr.Textbox(
label="Notes", placeholder="Other details of the model or evaluation, e.g., which answer prompt is used."
)
with gr.Column():
input_file = gr.File(label="Click to Upload a json File", type='binary')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[
input_file,
model_name_textbox,
revision_name_textbox,
model_link,
model_type,
model_size,
notes,
],
# outputs = submission_result,
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_baseline_df, outputs=data_component
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
# block.load(get_baseline_df, outputs=data_title)
block.launch() |