File size: 8,839 Bytes
5d57406
 
cff6787
 
5d57406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce8627b
cff6787
5d57406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6de388e
 
 
 
 
 
 
 
ce8627b
5d57406
5aa60a6
 
 
5d57406
 
 
 
 
 
 
 
 
 
 
 
cff6787
 
5d57406
 
 
 
cff6787
5d57406
cff6787
 
5d57406
 
 
 
 
 
 
 
 
cff6787
 
5d57406
 
6de388e
5d57406
 
 
 
cff6787
5d57406
 
 
 
 
 
cff6787
 
 
5d57406
 
 
6de388e
5d57406
 
 
 
ce8627b
 
5d57406
 
 
 
 
 
 
 
 
 
 
 
6de388e
5d57406
 
 
 
 
 
 
 
 
 
5aa60a6
cff6787
5d57406
 
cff6787
 
5d57406
cff6787
 
 
5d57406
5aa60a6
5d57406
 
5aa60a6
5d57406
 
ce8627b
5d57406
cff6787
5d57406
 
 
 
 
 
cff6787
 
 
 
 
5d57406
 
cff6787
ce8627b
 
 
cff6787
5d57406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce8627b
5d57406
 
 
cff6787
5d57406
 
 
 
 
 
cff6787
 
 
 
 
 
 
 
 
 
5d57406
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']

import gradio as gr
import pandas as pd
import re
import pdb
import tempfile

from constants import *
from src.compute import compute_scores

global data_component, filter_component


def validate_model_size(s):
    pattern = r'^\d+B$|^-$'
    if re.match(pattern, s):
        return s
    else:
        return '-'

def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths

def add_new_eval(
    input_file,
    model_name_textbox: str,
    revision_name_textbox: str,
    model_link: str,
    model_type: str,
    model_size: str,
    notes: str,
):
    if input_file is None:
        return "Error! Empty file!"
    else:

        model_size = validate_model_size(model_size)

        input_file = compute_scores(input_file)
        input_data = input_file[1]
        input_data = [float(i) for i in input_data]

        csv_data = pd.read_csv(CSV_DIR)

        if revision_name_textbox == '':
            col = csv_data.shape[0]
            model_name = model_name_textbox
            name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in csv_data['Model']]
            print(name_list)
            print(model_name)
            assert model_name not in name_list
        else:
            model_name = revision_name_textbox
            model_name_list = csv_data['Model']
            name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in model_name_list]
            if revision_name_textbox not in name_list:
                col = csv_data.shape[0]
            else:
                col = name_list.index(revision_name_textbox)

        if model_link == '':
            model_name = model_name  # no url
        else:
            model_name = '[' + model_name + '](' + model_link + ')'

        # add new data
        new_data = [
            model_name,
            model_type,
            model_size,
            input_data[0],
            input_data[1],
            input_data[2],
            input_data[3],
            input_data[4],
            input_data[5],
            input_data[6],
            input_data[7],
            input_data[8],
            input_data[9],
            input_data[10],
            input_data[11],
            input_data[12],
            input_data[13],
            input_data[14],
            input_data[15],
            input_data[16],
            input_data[17],
            input_data[18],
            input_data[19],
            input_data[20],
            input_data[21],
            input_data[22],
            input_data[23],
            input_data[24],
            notes,
            ]
        # print(len(new_data), col)
        # print(csv_data.loc[col])
        # print(model_name, model_type, model_size)
        csv_data.loc[col] = new_data 
        # with open(f'./file/{model_name}.json','w' ,encoding='utf-8') as f:
        #     json.dump(new_data, f)  
        csv_data.to_csv(CSV_DIR, index=False)
    return 0

def get_baseline_df():
    # pdb.set_trace()
    df = pd.read_csv(CSV_DIR)
    df = df.sort_values(by="Avg. All", ascending=False)
    present_columns = MODEL_INFO + checkbox_group.value
    df = df[present_columns]
    return df

def get_all_df():
    df = pd.read_csv(CSV_DIR)
    df = df.sort_values(by="Avg. All", ascending=False)
    return df

block = gr.Blocks()


with block:
    gr.Markdown(
        LEADERBORAD_INTRODUCTION
    )
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 TempCompass Benchmark", elem_id="video-benchmark-tab-table", id=0):
    
            gr.Markdown(
                TABLE_INTRODUCTION
            )

            # selection for column part:
            checkbox_group = gr.CheckboxGroup(
                choices=TASK_INFO,
                value=AVG_INFO,
                label="Select options",
                interactive=True,
            )

            # 创建数据帧组件
            data_component = gr.components.Dataframe(
                value=get_baseline_df, 
                headers=COLUMN_NAMES,
                type="pandas", 
                datatype=DATA_TITILE_TYPE,
                interactive=False,
                visible=True,
                )
    
            def on_checkbox_group_change(selected_columns):
                # pdb.set_trace()
                selected_columns = [item for item in TASK_INFO if item in selected_columns]
                present_columns = MODEL_INFO + selected_columns
                updated_data = get_all_df()[present_columns]
                updated_data = updated_data.sort_values(by=present_columns[1], ascending=False)
                updated_headers = present_columns
                print(updated_headers)
                print([COLUMN_NAMES.index(x) for x in updated_headers])
                update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]

                filter_component = gr.components.Dataframe(
                    value=updated_data, 
                    headers=updated_headers,
                    type="pandas", 
                    datatype=update_datatype,
                    interactive=False,
                    visible=True,
                    )
                # pdb.set_trace()
        
                return filter_component.constructor_args['value']

            # 将复选框组关联到处理函数
            checkbox_group.change(fn=on_checkbox_group_change, inputs=checkbox_group, outputs=data_component)
        '''
        # table 2
        with gr.TabItem("📝 About", elem_id="seed-benchmark-tab-table", id=2):
            gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
        '''
        # table 3 
        with gr.TabItem("🚀 Submit here! ", elem_id="seed-benchmark-tab-table", id=3):
            # gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name", placeholder="Video-LLaVA-7B"
                        )
                    revision_name_textbox = gr.Textbox(
                        label="Revision Model Name", placeholder="Video-LLaVA-7B"
                    )
                    model_link = gr.Textbox(
                        label="Model Link", placeholder="https://huggingface.co/LanguageBind/Video-LLaVA-7B"
                    )
                    model_type = gr.Dropdown(
                        choices=[                         
                            "LLM",
                            "ImageLLM",
                            "VideoLLM",
                            "Other", 
                        ], 
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )
                    model_size = gr.Textbox(
                        label="Model size", placeholder="7B(Input content format must be 'number+B' or '-', default is '-')"
                    )
                    notes = gr.Textbox(
                        label="Notes", placeholder="Other details of the model or evaluation, e.g., which answer prompt is used."
                    )

            with gr.Column():

                input_file = gr.File(label="Click to Upload a json File", type='binary')
                submit_button = gr.Button("Submit Eval")
    
                submission_result = gr.Markdown()
                submit_button.click(
                    add_new_eval,
                    inputs=[
                        input_file,
                        model_name_textbox,
                        revision_name_textbox,
                        model_link,
                        model_type,
                        model_size,
                        notes,
                    ],
                    # outputs = submission_result,
                )

    with gr.Row():
        data_run = gr.Button("Refresh")
        data_run.click(
            get_baseline_df, outputs=data_component
        )
    
    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

    # block.load(get_baseline_df, outputs=data_title)

block.launch()