m-adil-ali commited on
Commit
31f453f
β€’
1 Parent(s): 52ab14e

Rename untitled.py to app.py

Browse files
Files changed (1) hide show
  1. untitled.py β†’ app.py +0 -119
untitled.py β†’ app.py RENAMED
@@ -1,14 +1,3 @@
1
- # -*- coding: utf-8 -*-
2
- """Untitled
3
-
4
- Automatically generated by Colab.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/12GhPKbBzxei0ZhB0r-m5kvNOaCRyCxiM
8
- """
9
-
10
- !pip install gradio openai gtts pydub numpy requests groq openai-whisper transformers
11
- !apt-get install -y ffmpeg
12
 
13
  import os
14
  os.environ["GROQ_API_KEY"] = "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"
@@ -87,57 +76,6 @@ iface.launch()
87
 
88
 
89
 
90
- # import os
91
- # import gradio as gr
92
- # import whisper
93
- # from gtts import gTTS
94
- # import io
95
- # from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
96
- # from groq import Groq
97
-
98
- # # Initialize the Groq client
99
- # client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
100
-
101
- # # Load the Whisper model
102
- # whisper_model = whisper.load_model("base") # You can choose other models like "small", "medium", "large"
103
-
104
- # # Initialize the grammar correction pipeline
105
- # corrector = pipeline("text2text-generation", model="pszemraj/flan-t5-large-grammar-synthesis")
106
-
107
- # def process_audio(file_path):
108
- # try:
109
- # # Load the audio file
110
- # audio = whisper.load_audio(file_path)
111
-
112
- # # Transcribe the audio using Whisper
113
- # result = whisper_model.transcribe(audio)
114
- # user_text = result["text"]
115
-
116
- # # Display the user input text
117
- # corrected_text = corrector(user_text)[0]['generated_text'].strip()
118
-
119
- # # Generate a response using Groq
120
- # chat_completion = client.chat.completions.create(
121
- # messages=[{"role": "user", "content": corrected_text}],
122
- # model="llama3-8b-8192", # Replace with the correct model if necessary
123
- # )
124
-
125
- # # Access the response using dot notation
126
- # response_message = chat_completion.choices[0].message.content.strip()
127
-
128
- # # Convert the response text to speech
129
- # tts = gTTS(response_message)
130
- # response_audio_io = io.BytesIO()
131
- # tts.write_to_fp(response_audio_io) # Save the audio to the BytesIO object
132
- # response_audio_io.seek(0)
133
-
134
- # # Save audio to a file to ensure it's generated correctly
135
- # with open("response.mp3", "wb") as audio_file:
136
- # audio_file.write(response_audio_io.getvalue())
137
-
138
- # # Return the original text, corrected text, and the path to the saved audio file
139
- # return user_text, corrected_text, "response.mp3"
140
-
141
  # except Exception as e:
142
  # return f"An error occurred: {e}", None, None
143
 
@@ -156,60 +94,3 @@ iface.launch()
156
 
157
 
158
 
159
-
160
- # # import os
161
- # # import gradio as gr
162
- # # import whisper
163
- # # from gtts import gTTS
164
- # # import io
165
- # # from groq import Groq
166
-
167
- # # # Initialize the Groq client
168
- # # client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
169
-
170
- # # # Load the Whisper model
171
- # # model = whisper.load_model("base") # You can choose other models like "small", "medium", "large"
172
-
173
- # # def process_audio(file_path):
174
- # # try:
175
- # # # Load the audio file
176
- # # audio = whisper.load_audio(file_path)
177
-
178
- # # # Transcribe the audio using Whisper
179
- # # result = model.transcribe(audio)
180
- # # text = result["text"]
181
-
182
- # # # Generate a response using Groq
183
- # # chat_completion = client.chat.completions.create(
184
- # # messages=[{"role": "user", "content": text}],
185
- # # model="llama3-8b-8192", # Replace with the correct model if necessary
186
- # # )
187
-
188
- # # # Access the response using dot notation
189
- # # response_message = chat_completion.choices[0].message.content.strip()
190
-
191
- # # # Convert the response text to speech
192
- # # tts = gTTS(response_message)
193
- # # response_audio_io = io.BytesIO()
194
- # # tts.write_to_fp(response_audio_io) # Save the audio to the BytesIO object
195
- # # response_audio_io.seek(0)
196
-
197
- # # # Save audio to a file to ensure it's generated correctly
198
- # # with open("response.mp3", "wb") as audio_file:
199
- # # audio_file.write(response_audio_io.getvalue())
200
-
201
- # # # Return the response text and the path to the saved audio file
202
- # # return response_message, "response.mp3"
203
-
204
- # # except Exception as e:
205
- # # return f"An error occurred: {e}", None
206
-
207
- # # iface = gr.Interface(
208
- # # fn=process_audio,
209
- # # inputs=gr.Audio(type="filepath"), # Use type="filepath"
210
- # # outputs=[gr.Textbox(label="Response Text"), gr.Audio(label="Response Audio")],
211
- # # live=True
212
- # # )
213
-
214
- # # iface.launch()
215
-
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
  import os
3
  os.environ["GROQ_API_KEY"] = "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"
 
76
 
77
 
78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  # except Exception as e:
80
  # return f"An error occurred: {e}", None, None
81
 
 
94
 
95
 
96