import streamlit as st from sentence_transformers import SentenceTransformer import datasets x = st.slider('Select a value') st.write(x, 'squared is', x * x) st.sidebar.text_input("Type your quote here") dataset = datasets.load_dataset('A-Roucher/english_historical_quotes')['train'] model_name = "sentence-transformers/all-MiniLM-L6-v2" # BAAI/bge-small-en-v1.5" # "Cohere/Cohere-embed-english-light-v3.0" # "sentence-transformers/all-MiniLM-L6-v2" encoder = SentenceTransformer(model_name) embeddings = encoder.encode( dataset["quote"], batch_size=8, show_progress_bar=True, convert_to_numpy=True, normalize_embeddings=True, ) dataset_embeddings = datasets.Dataset.from_dict({"embeddings": embeddings}) dataset_embeddings.add_faiss_index(column="embeddings") # dataset_embeddings.save_faiss_index('embeddings', 'output/index_alone.faiss') # import faiss # index = faiss.read_index('index_alone.faiss') sentence = "Knowledge of history is power." sentence_embedding = encoder.encode([sentence]) # scores, samples = dataset_embeddings.search( # sentence_embedding, k=10 # ) from sentence_transformers.util import semantic_search # hits = semantic_search(sentence_embedding, dataset_embeddings[:, :], top_k=5) author_indexes = range(1000) hits = semantic_search(sentence_embedding, dataset_embeddings[author_indexes, :], top_k=5) list_hits = [author_indexes[i['corpus_id']] for i in hits[0]] st.write(dataset_embeddings.select([12676, 4967, 2612, 8884, 4797])) # sentence_embedding = model.encode([sentence]) # scores, sample_indexes = QUOTES_INDEX.search( # sentence_embedding, k=k # ) # quotes = QUOTES_DATASET.iloc[sample_indexes[0]] # author_descriptions_df = get_authors_descriptions(quotes['author'].unique()) # quotes = quotes.merge(author_descriptions_df, on='author') # quotes["scores"] = scores[0] # quotes = quotes.sort_values("scores", ascending=True) # lower is better