m7mdal7aj commited on
Commit
92894b3
1 Parent(s): fcdf658

uploading a fresh copy of the detection models

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. models/deformable-detr-detic/.gitattributes +34 -0
  2. models/deformable-detr-detic/README.md +88 -0
  3. models/deformable-detr-detic/config.json +2551 -0
  4. models/deformable-detr-detic/model.safetensors +3 -0
  5. models/deformable-detr-detic/preprocessor_config.json +24 -0
  6. models/deformable-detr-detic/pytorch_model.bin +3 -0
  7. models/yolov5/.dockerignore +222 -0
  8. models/yolov5/.gitattributes +2 -0
  9. models/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml +85 -0
  10. models/yolov5/.github/ISSUE_TEMPLATE/config.yml +11 -0
  11. models/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml +50 -0
  12. models/yolov5/.github/ISSUE_TEMPLATE/question.yml +33 -0
  13. models/yolov5/.github/dependabot.yml +27 -0
  14. models/yolov5/.github/workflows/ci-testing.yml +155 -0
  15. models/yolov5/.github/workflows/codeql-analysis.yml +55 -0
  16. models/yolov5/.github/workflows/docker.yml +60 -0
  17. models/yolov5/.github/workflows/format.yml +27 -0
  18. models/yolov5/.github/workflows/greetings.yml +65 -0
  19. models/yolov5/.github/workflows/links.yml +71 -0
  20. models/yolov5/.github/workflows/stale.yml +47 -0
  21. models/yolov5/.gitignore +257 -0
  22. models/yolov5/CITATION.cff +14 -0
  23. models/yolov5/CONTRIBUTING.md +76 -0
  24. models/yolov5/LICENSE +661 -0
  25. models/yolov5/README.md +473 -0
  26. models/yolov5/README.zh-CN.md +473 -0
  27. models/yolov5/__pycache__/export.cpython-310.pyc +0 -0
  28. models/yolov5/__pycache__/export.cpython-311.pyc +0 -0
  29. models/yolov5/__pycache__/hubconf.cpython-310.pyc +0 -0
  30. models/yolov5/__pycache__/hubconf.cpython-311.pyc +0 -0
  31. models/yolov5/benchmarks.py +174 -0
  32. models/yolov5/classify/predict.py +238 -0
  33. models/yolov5/classify/train.py +370 -0
  34. models/yolov5/classify/tutorial.ipynb +0 -0
  35. models/yolov5/classify/val.py +175 -0
  36. models/yolov5/data/Argoverse.yaml +72 -0
  37. models/yolov5/data/GlobalWheat2020.yaml +52 -0
  38. models/yolov5/data/ImageNet.yaml +1020 -0
  39. models/yolov5/data/ImageNet10.yaml +30 -0
  40. models/yolov5/data/ImageNet100.yaml +119 -0
  41. models/yolov5/data/ImageNet1000.yaml +1020 -0
  42. models/yolov5/data/Objects365.yaml +436 -0
  43. models/yolov5/data/SKU-110K.yaml +51 -0
  44. models/yolov5/data/VOC.yaml +98 -0
  45. models/yolov5/data/VisDrone.yaml +68 -0
  46. models/yolov5/data/coco.yaml +114 -0
  47. models/yolov5/data/coco128-seg.yaml +99 -0
  48. models/yolov5/data/coco128.yaml +99 -0
  49. models/yolov5/data/hyps/hyp.Objects365.yaml +34 -0
  50. models/yolov5/data/hyps/hyp.VOC.yaml +40 -0
models/deformable-detr-detic/.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
models/deformable-detr-detic/README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - object-detection
5
+ - vision
6
+ - detic
7
+ datasets:
8
+ - coco
9
+ - lvis
10
+ widget:
11
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
12
+ example_title: Savanna
13
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
14
+ example_title: Football Match
15
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
16
+ example_title: Airport
17
+ ---
18
+
19
+ # Deformable DETR model trained using the Detic method on LVIS
20
+
21
+ Deformable DEtection TRansformer (DETR), trained on LVIS (including 1203 classes). It was introduced in the paper [Detecting Twenty-thousand Classes using Image-level Supervision](https://arxiv.org/abs/2201.02605) by Zhou et al. and first released in [this repository](https://github.com/facebookresearch/Detic).
22
+
23
+ This model corresponds to the "Detic_DeformDETR_R50_4x" checkpoint released in the original repository.
24
+
25
+ Disclaimer: The team releasing Detic did not write a model card for this model so this model card has been written by the Hugging Face team.
26
+
27
+ ## Model description
28
+
29
+ The DETR model is an encoder-decoder transformer with a convolutional backbone. Two heads are added on top of the decoder outputs in order to perform object detection: a linear layer for the class labels and a MLP (multi-layer perceptron) for the bounding boxes. The model uses so-called object queries to detect objects in an image. Each object query looks for a particular object in the image. For COCO, the number of object queries is set to 100.
30
+
31
+ The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model.
32
+
33
+ ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/deformable_detr_architecture.png)
34
+
35
+ ## Intended uses & limitations
36
+
37
+ You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=sensetime/deformable-detr) to look for all available Deformable DETR models.
38
+
39
+ ### How to use
40
+
41
+ Here is how to use this model:
42
+
43
+ ```python
44
+ from transformers import AutoImageProcessor, DeformableDetrForObjectDetection
45
+ import torch
46
+ from PIL import Image
47
+ import requests
48
+
49
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
50
+ image = Image.open(requests.get(url, stream=True).raw)
51
+
52
+ processor = AutoImageProcessor.from_pretrained("facebook/deformable-detr-detic")
53
+ model = DeformableDetrForObjectDetection.from_pretrained("facebook/deformable-detr-detic")
54
+
55
+ inputs = processor(images=image, return_tensors="pt")
56
+ outputs = model(**inputs)
57
+
58
+ # convert outputs (bounding boxes and class logits) to COCO API
59
+ # let's only keep detections with score > 0.7
60
+ target_sizes = torch.tensor([image.size[::-1]])
61
+ results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
62
+
63
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
64
+ box = [round(i, 2) for i in box.tolist()]
65
+ print(
66
+ f"Detected {model.config.id2label[label.item()]} with confidence "
67
+ f"{round(score.item(), 3)} at location {box}"
68
+ )
69
+ ```
70
+
71
+ ## Evaluation results
72
+
73
+ This model achieves 32.5 box mAP and 26.2 mAP (rare classes) on LVIS.
74
+
75
+ ### BibTeX entry and citation info
76
+
77
+ ```bibtex
78
+ @misc{https://doi.org/10.48550/arxiv.2010.04159,
79
+ doi = {10.48550/ARXIV.2010.04159},
80
+ url = {https://arxiv.org/abs/2010.04159},
81
+ author = {Zhu, Xizhou and Su, Weijie and Lu, Lewei and Li, Bin and Wang, Xiaogang and Dai, Jifeng},
82
+ keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
83
+ title = {Deformable DETR: Deformable Transformers for End-to-End Object Detection},
84
+ publisher = {arXiv},
85
+ year = {2020},
86
+ copyright = {arXiv.org perpetual, non-exclusive license}
87
+ }
88
+ ```
models/deformable-detr-detic/config.json ADDED
@@ -0,0 +1,2551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "relu",
5
+ "architectures": [
6
+ "DeformableDetrForObjectDetection"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "auxiliary_loss": false,
10
+ "backbone": null,
11
+ "backbone_config": {
12
+ "_name_or_path": "",
13
+ "add_cross_attention": false,
14
+ "architectures": null,
15
+ "bad_words_ids": null,
16
+ "begin_suppress_tokens": null,
17
+ "bos_token_id": null,
18
+ "chunk_size_feed_forward": 0,
19
+ "cross_attention_hidden_size": null,
20
+ "decoder_start_token_id": null,
21
+ "depths": [
22
+ 3,
23
+ 4,
24
+ 6,
25
+ 3
26
+ ],
27
+ "diversity_penalty": 0.0,
28
+ "do_sample": false,
29
+ "downsample_in_first_stage": false,
30
+ "early_stopping": false,
31
+ "embedding_size": 64,
32
+ "encoder_no_repeat_ngram_size": 0,
33
+ "eos_token_id": null,
34
+ "exponential_decay_length_penalty": null,
35
+ "finetuning_task": null,
36
+ "forced_bos_token_id": null,
37
+ "forced_eos_token_id": null,
38
+ "hidden_act": "relu",
39
+ "hidden_sizes": [
40
+ 256,
41
+ 512,
42
+ 1024,
43
+ 2048
44
+ ],
45
+ "id2label": {
46
+ "0": "LABEL_0",
47
+ "1": "LABEL_1"
48
+ },
49
+ "is_decoder": false,
50
+ "is_encoder_decoder": false,
51
+ "label2id": {
52
+ "LABEL_0": 0,
53
+ "LABEL_1": 1
54
+ },
55
+ "layer_type": "bottleneck",
56
+ "length_penalty": 1.0,
57
+ "max_length": 20,
58
+ "min_length": 0,
59
+ "model_type": "resnet",
60
+ "no_repeat_ngram_size": 0,
61
+ "num_beam_groups": 1,
62
+ "num_beams": 1,
63
+ "num_channels": 3,
64
+ "num_return_sequences": 1,
65
+ "out_features": [
66
+ "stage2",
67
+ "stage3",
68
+ "stage4"
69
+ ],
70
+ "output_attentions": false,
71
+ "output_hidden_states": false,
72
+ "output_scores": false,
73
+ "pad_token_id": null,
74
+ "prefix": null,
75
+ "problem_type": null,
76
+ "pruned_heads": {},
77
+ "remove_invalid_values": false,
78
+ "repetition_penalty": 1.0,
79
+ "return_dict": true,
80
+ "return_dict_in_generate": false,
81
+ "sep_token_id": null,
82
+ "stage_names": [
83
+ "stem",
84
+ "stage1",
85
+ "stage2",
86
+ "stage3",
87
+ "stage4"
88
+ ],
89
+ "suppress_tokens": null,
90
+ "task_specific_params": null,
91
+ "temperature": 1.0,
92
+ "tf_legacy_loss": false,
93
+ "tie_encoder_decoder": false,
94
+ "tie_word_embeddings": true,
95
+ "tokenizer_class": null,
96
+ "top_k": 50,
97
+ "top_p": 1.0,
98
+ "torch_dtype": null,
99
+ "torchscript": false,
100
+ "transformers_version": "4.27.0.dev0",
101
+ "typical_p": 1.0,
102
+ "use_bfloat16": false
103
+ },
104
+ "bbox_cost": 5,
105
+ "bbox_loss_coefficient": 5,
106
+ "class_cost": 1,
107
+ "d_model": 256,
108
+ "decoder_attention_heads": 8,
109
+ "decoder_ffn_dim": 1024,
110
+ "decoder_layers": 6,
111
+ "decoder_n_points": 4,
112
+ "dice_loss_coefficient": 1,
113
+ "dilation": null,
114
+ "dropout": 0.1,
115
+ "encoder_attention_heads": 8,
116
+ "encoder_ffn_dim": 1024,
117
+ "encoder_layerdrop": 0.0,
118
+ "encoder_layers": 6,
119
+ "encoder_n_points": 4,
120
+ "eos_coefficient": 0.1,
121
+ "focal_alpha": 0.25,
122
+ "giou_cost": 2,
123
+ "giou_loss_coefficient": 2,
124
+ "id2label": {
125
+ "0": "aerosol_can",
126
+ "1": "air_conditioner",
127
+ "2": "airplane",
128
+ "3": "alarm_clock",
129
+ "4": "alcohol",
130
+ "5": "alligator",
131
+ "6": "almond",
132
+ "7": "ambulance",
133
+ "8": "amplifier",
134
+ "9": "anklet",
135
+ "10": "antenna",
136
+ "11": "apple",
137
+ "12": "applesauce",
138
+ "13": "apricot",
139
+ "14": "apron",
140
+ "15": "aquarium",
141
+ "16": "arctic_(type_of_shoe)",
142
+ "17": "armband",
143
+ "18": "armchair",
144
+ "19": "armoire",
145
+ "20": "armor",
146
+ "21": "artichoke",
147
+ "22": "trash_can",
148
+ "23": "ashtray",
149
+ "24": "asparagus",
150
+ "25": "atomizer",
151
+ "26": "avocado",
152
+ "27": "award",
153
+ "28": "awning",
154
+ "29": "ax",
155
+ "30": "baboon",
156
+ "31": "baby_buggy",
157
+ "32": "basketball_backboard",
158
+ "33": "backpack",
159
+ "34": "handbag",
160
+ "35": "suitcase",
161
+ "36": "bagel",
162
+ "37": "bagpipe",
163
+ "38": "baguet",
164
+ "39": "bait",
165
+ "40": "ball",
166
+ "41": "ballet_skirt",
167
+ "42": "balloon",
168
+ "43": "bamboo",
169
+ "44": "banana",
170
+ "45": "Band_Aid",
171
+ "46": "bandage",
172
+ "47": "bandanna",
173
+ "48": "banjo",
174
+ "49": "banner",
175
+ "50": "barbell",
176
+ "51": "barge",
177
+ "52": "barrel",
178
+ "53": "barrette",
179
+ "54": "barrow",
180
+ "55": "baseball_base",
181
+ "56": "baseball",
182
+ "57": "baseball_bat",
183
+ "58": "baseball_cap",
184
+ "59": "baseball_glove",
185
+ "60": "basket",
186
+ "61": "basketball",
187
+ "62": "bass_horn",
188
+ "63": "bat_(animal)",
189
+ "64": "bath_mat",
190
+ "65": "bath_towel",
191
+ "66": "bathrobe",
192
+ "67": "bathtub",
193
+ "68": "batter_(food)",
194
+ "69": "battery",
195
+ "70": "beachball",
196
+ "71": "bead",
197
+ "72": "bean_curd",
198
+ "73": "beanbag",
199
+ "74": "beanie",
200
+ "75": "bear",
201
+ "76": "bed",
202
+ "77": "bedpan",
203
+ "78": "bedspread",
204
+ "79": "cow",
205
+ "80": "beef_(food)",
206
+ "81": "beeper",
207
+ "82": "beer_bottle",
208
+ "83": "beer_can",
209
+ "84": "beetle",
210
+ "85": "bell",
211
+ "86": "bell_pepper",
212
+ "87": "belt",
213
+ "88": "belt_buckle",
214
+ "89": "bench",
215
+ "90": "beret",
216
+ "91": "bib",
217
+ "92": "Bible",
218
+ "93": "bicycle",
219
+ "94": "visor",
220
+ "95": "billboard",
221
+ "96": "binder",
222
+ "97": "binoculars",
223
+ "98": "bird",
224
+ "99": "birdfeeder",
225
+ "100": "birdbath",
226
+ "101": "birdcage",
227
+ "102": "birdhouse",
228
+ "103": "birthday_cake",
229
+ "104": "birthday_card",
230
+ "105": "pirate_flag",
231
+ "106": "black_sheep",
232
+ "107": "blackberry",
233
+ "108": "blackboard",
234
+ "109": "blanket",
235
+ "110": "blazer",
236
+ "111": "blender",
237
+ "112": "blimp",
238
+ "113": "blinker",
239
+ "114": "blouse",
240
+ "115": "blueberry",
241
+ "116": "gameboard",
242
+ "117": "boat",
243
+ "118": "bob",
244
+ "119": "bobbin",
245
+ "120": "bobby_pin",
246
+ "121": "boiled_egg",
247
+ "122": "bolo_tie",
248
+ "123": "deadbolt",
249
+ "124": "bolt",
250
+ "125": "bonnet",
251
+ "126": "book",
252
+ "127": "bookcase",
253
+ "128": "booklet",
254
+ "129": "bookmark",
255
+ "130": "boom_microphone",
256
+ "131": "boot",
257
+ "132": "bottle",
258
+ "133": "bottle_opener",
259
+ "134": "bouquet",
260
+ "135": "bow_(weapon)",
261
+ "136": "bow_(decorative_ribbons)",
262
+ "137": "bow-tie",
263
+ "138": "bowl",
264
+ "139": "pipe_bowl",
265
+ "140": "bowler_hat",
266
+ "141": "bowling_ball",
267
+ "142": "box",
268
+ "143": "boxing_glove",
269
+ "144": "suspenders",
270
+ "145": "bracelet",
271
+ "146": "brass_plaque",
272
+ "147": "brassiere",
273
+ "148": "bread-bin",
274
+ "149": "bread",
275
+ "150": "breechcloth",
276
+ "151": "bridal_gown",
277
+ "152": "briefcase",
278
+ "153": "broccoli",
279
+ "154": "broach",
280
+ "155": "broom",
281
+ "156": "brownie",
282
+ "157": "brussels_sprouts",
283
+ "158": "bubble_gum",
284
+ "159": "bucket",
285
+ "160": "horse_buggy",
286
+ "161": "bull",
287
+ "162": "bulldog",
288
+ "163": "bulldozer",
289
+ "164": "bullet_train",
290
+ "165": "bulletin_board",
291
+ "166": "bulletproof_vest",
292
+ "167": "bullhorn",
293
+ "168": "bun",
294
+ "169": "bunk_bed",
295
+ "170": "buoy",
296
+ "171": "burrito",
297
+ "172": "bus_(vehicle)",
298
+ "173": "business_card",
299
+ "174": "butter",
300
+ "175": "butterfly",
301
+ "176": "button",
302
+ "177": "cab_(taxi)",
303
+ "178": "cabana",
304
+ "179": "cabin_car",
305
+ "180": "cabinet",
306
+ "181": "locker",
307
+ "182": "cake",
308
+ "183": "calculator",
309
+ "184": "calendar",
310
+ "185": "calf",
311
+ "186": "camcorder",
312
+ "187": "camel",
313
+ "188": "camera",
314
+ "189": "camera_lens",
315
+ "190": "camper_(vehicle)",
316
+ "191": "can",
317
+ "192": "can_opener",
318
+ "193": "candle",
319
+ "194": "candle_holder",
320
+ "195": "candy_bar",
321
+ "196": "candy_cane",
322
+ "197": "walking_cane",
323
+ "198": "canister",
324
+ "199": "canoe",
325
+ "200": "cantaloup",
326
+ "201": "canteen",
327
+ "202": "cap_(headwear)",
328
+ "203": "bottle_cap",
329
+ "204": "cape",
330
+ "205": "cappuccino",
331
+ "206": "car_(automobile)",
332
+ "207": "railcar_(part_of_a_train)",
333
+ "208": "elevator_car",
334
+ "209": "car_battery",
335
+ "210": "identity_card",
336
+ "211": "card",
337
+ "212": "cardigan",
338
+ "213": "cargo_ship",
339
+ "214": "carnation",
340
+ "215": "horse_carriage",
341
+ "216": "carrot",
342
+ "217": "tote_bag",
343
+ "218": "cart",
344
+ "219": "carton",
345
+ "220": "cash_register",
346
+ "221": "casserole",
347
+ "222": "cassette",
348
+ "223": "cast",
349
+ "224": "cat",
350
+ "225": "cauliflower",
351
+ "226": "cayenne_(spice)",
352
+ "227": "CD_player",
353
+ "228": "celery",
354
+ "229": "cellular_telephone",
355
+ "230": "chain_mail",
356
+ "231": "chair",
357
+ "232": "chaise_longue",
358
+ "233": "chalice",
359
+ "234": "chandelier",
360
+ "235": "chap",
361
+ "236": "checkbook",
362
+ "237": "checkerboard",
363
+ "238": "cherry",
364
+ "239": "chessboard",
365
+ "240": "chicken_(animal)",
366
+ "241": "chickpea",
367
+ "242": "chili_(vegetable)",
368
+ "243": "chime",
369
+ "244": "chinaware",
370
+ "245": "crisp_(potato_chip)",
371
+ "246": "poker_chip",
372
+ "247": "chocolate_bar",
373
+ "248": "chocolate_cake",
374
+ "249": "chocolate_milk",
375
+ "250": "chocolate_mousse",
376
+ "251": "choker",
377
+ "252": "chopping_board",
378
+ "253": "chopstick",
379
+ "254": "Christmas_tree",
380
+ "255": "slide",
381
+ "256": "cider",
382
+ "257": "cigar_box",
383
+ "258": "cigarette",
384
+ "259": "cigarette_case",
385
+ "260": "cistern",
386
+ "261": "clarinet",
387
+ "262": "clasp",
388
+ "263": "cleansing_agent",
389
+ "264": "cleat_(for_securing_rope)",
390
+ "265": "clementine",
391
+ "266": "clip",
392
+ "267": "clipboard",
393
+ "268": "clippers_(for_plants)",
394
+ "269": "cloak",
395
+ "270": "clock",
396
+ "271": "clock_tower",
397
+ "272": "clothes_hamper",
398
+ "273": "clothespin",
399
+ "274": "clutch_bag",
400
+ "275": "coaster",
401
+ "276": "coat",
402
+ "277": "coat_hanger",
403
+ "278": "coatrack",
404
+ "279": "cock",
405
+ "280": "cockroach",
406
+ "281": "cocoa_(beverage)",
407
+ "282": "coconut",
408
+ "283": "coffee_maker",
409
+ "284": "coffee_table",
410
+ "285": "coffeepot",
411
+ "286": "coil",
412
+ "287": "coin",
413
+ "288": "colander",
414
+ "289": "coleslaw",
415
+ "290": "coloring_material",
416
+ "291": "combination_lock",
417
+ "292": "pacifier",
418
+ "293": "comic_book",
419
+ "294": "compass",
420
+ "295": "computer_keyboard",
421
+ "296": "condiment",
422
+ "297": "cone",
423
+ "298": "control",
424
+ "299": "convertible_(automobile)",
425
+ "300": "sofa_bed",
426
+ "301": "cooker",
427
+ "302": "cookie",
428
+ "303": "cooking_utensil",
429
+ "304": "cooler_(for_food)",
430
+ "305": "cork_(bottle_plug)",
431
+ "306": "corkboard",
432
+ "307": "corkscrew",
433
+ "308": "edible_corn",
434
+ "309": "cornbread",
435
+ "310": "cornet",
436
+ "311": "cornice",
437
+ "312": "cornmeal",
438
+ "313": "corset",
439
+ "314": "costume",
440
+ "315": "cougar",
441
+ "316": "coverall",
442
+ "317": "cowbell",
443
+ "318": "cowboy_hat",
444
+ "319": "crab_(animal)",
445
+ "320": "crabmeat",
446
+ "321": "cracker",
447
+ "322": "crape",
448
+ "323": "crate",
449
+ "324": "crayon",
450
+ "325": "cream_pitcher",
451
+ "326": "crescent_roll",
452
+ "327": "crib",
453
+ "328": "crock_pot",
454
+ "329": "crossbar",
455
+ "330": "crouton",
456
+ "331": "crow",
457
+ "332": "crowbar",
458
+ "333": "crown",
459
+ "334": "crucifix",
460
+ "335": "cruise_ship",
461
+ "336": "police_cruiser",
462
+ "337": "crumb",
463
+ "338": "crutch",
464
+ "339": "cub_(animal)",
465
+ "340": "cube",
466
+ "341": "cucumber",
467
+ "342": "cufflink",
468
+ "343": "cup",
469
+ "344": "trophy_cup",
470
+ "345": "cupboard",
471
+ "346": "cupcake",
472
+ "347": "hair_curler",
473
+ "348": "curling_iron",
474
+ "349": "curtain",
475
+ "350": "cushion",
476
+ "351": "cylinder",
477
+ "352": "cymbal",
478
+ "353": "dagger",
479
+ "354": "dalmatian",
480
+ "355": "dartboard",
481
+ "356": "date_(fruit)",
482
+ "357": "deck_chair",
483
+ "358": "deer",
484
+ "359": "dental_floss",
485
+ "360": "desk",
486
+ "361": "detergent",
487
+ "362": "diaper",
488
+ "363": "diary",
489
+ "364": "die",
490
+ "365": "dinghy",
491
+ "366": "dining_table",
492
+ "367": "tux",
493
+ "368": "dish",
494
+ "369": "dish_antenna",
495
+ "370": "dishrag",
496
+ "371": "dishtowel",
497
+ "372": "dishwasher",
498
+ "373": "dishwasher_detergent",
499
+ "374": "dispenser",
500
+ "375": "diving_board",
501
+ "376": "Dixie_cup",
502
+ "377": "dog",
503
+ "378": "dog_collar",
504
+ "379": "doll",
505
+ "380": "dollar",
506
+ "381": "dollhouse",
507
+ "382": "dolphin",
508
+ "383": "domestic_ass",
509
+ "384": "doorknob",
510
+ "385": "doormat",
511
+ "386": "doughnut",
512
+ "387": "dove",
513
+ "388": "dragonfly",
514
+ "389": "drawer",
515
+ "390": "underdrawers",
516
+ "391": "dress",
517
+ "392": "dress_hat",
518
+ "393": "dress_suit",
519
+ "394": "dresser",
520
+ "395": "drill",
521
+ "396": "drone",
522
+ "397": "dropper",
523
+ "398": "drum_(musical_instrument)",
524
+ "399": "drumstick",
525
+ "400": "duck",
526
+ "401": "duckling",
527
+ "402": "duct_tape",
528
+ "403": "duffel_bag",
529
+ "404": "dumbbell",
530
+ "405": "dumpster",
531
+ "406": "dustpan",
532
+ "407": "eagle",
533
+ "408": "earphone",
534
+ "409": "earplug",
535
+ "410": "earring",
536
+ "411": "easel",
537
+ "412": "eclair",
538
+ "413": "eel",
539
+ "414": "egg",
540
+ "415": "egg_roll",
541
+ "416": "egg_yolk",
542
+ "417": "eggbeater",
543
+ "418": "eggplant",
544
+ "419": "electric_chair",
545
+ "420": "refrigerator",
546
+ "421": "elephant",
547
+ "422": "elk",
548
+ "423": "envelope",
549
+ "424": "eraser",
550
+ "425": "escargot",
551
+ "426": "eyepatch",
552
+ "427": "falcon",
553
+ "428": "fan",
554
+ "429": "faucet",
555
+ "430": "fedora",
556
+ "431": "ferret",
557
+ "432": "Ferris_wheel",
558
+ "433": "ferry",
559
+ "434": "fig_(fruit)",
560
+ "435": "fighter_jet",
561
+ "436": "figurine",
562
+ "437": "file_cabinet",
563
+ "438": "file_(tool)",
564
+ "439": "fire_alarm",
565
+ "440": "fire_engine",
566
+ "441": "fire_extinguisher",
567
+ "442": "fire_hose",
568
+ "443": "fireplace",
569
+ "444": "fireplug",
570
+ "445": "first-aid_kit",
571
+ "446": "fish",
572
+ "447": "fish_(food)",
573
+ "448": "fishbowl",
574
+ "449": "fishing_rod",
575
+ "450": "flag",
576
+ "451": "flagpole",
577
+ "452": "flamingo",
578
+ "453": "flannel",
579
+ "454": "flap",
580
+ "455": "flash",
581
+ "456": "flashlight",
582
+ "457": "fleece",
583
+ "458": "flip-flop_(sandal)",
584
+ "459": "flipper_(footwear)",
585
+ "460": "flower_arrangement",
586
+ "461": "flute_glass",
587
+ "462": "foal",
588
+ "463": "folding_chair",
589
+ "464": "food_processor",
590
+ "465": "football_(American)",
591
+ "466": "football_helmet",
592
+ "467": "footstool",
593
+ "468": "fork",
594
+ "469": "forklift",
595
+ "470": "freight_car",
596
+ "471": "French_toast",
597
+ "472": "freshener",
598
+ "473": "frisbee",
599
+ "474": "frog",
600
+ "475": "fruit_juice",
601
+ "476": "frying_pan",
602
+ "477": "fudge",
603
+ "478": "funnel",
604
+ "479": "futon",
605
+ "480": "gag",
606
+ "481": "garbage",
607
+ "482": "garbage_truck",
608
+ "483": "garden_hose",
609
+ "484": "gargle",
610
+ "485": "gargoyle",
611
+ "486": "garlic",
612
+ "487": "gasmask",
613
+ "488": "gazelle",
614
+ "489": "gelatin",
615
+ "490": "gemstone",
616
+ "491": "generator",
617
+ "492": "giant_panda",
618
+ "493": "gift_wrap",
619
+ "494": "ginger",
620
+ "495": "giraffe",
621
+ "496": "cincture",
622
+ "497": "glass_(drink_container)",
623
+ "498": "globe",
624
+ "499": "glove",
625
+ "500": "goat",
626
+ "501": "goggles",
627
+ "502": "goldfish",
628
+ "503": "golf_club",
629
+ "504": "golfcart",
630
+ "505": "gondola_(boat)",
631
+ "506": "goose",
632
+ "507": "gorilla",
633
+ "508": "gourd",
634
+ "509": "grape",
635
+ "510": "grater",
636
+ "511": "gravestone",
637
+ "512": "gravy_boat",
638
+ "513": "green_bean",
639
+ "514": "green_onion",
640
+ "515": "griddle",
641
+ "516": "grill",
642
+ "517": "grits",
643
+ "518": "grizzly",
644
+ "519": "grocery_bag",
645
+ "520": "guitar",
646
+ "521": "gull",
647
+ "522": "gun",
648
+ "523": "hairbrush",
649
+ "524": "hairnet",
650
+ "525": "hairpin",
651
+ "526": "halter_top",
652
+ "527": "ham",
653
+ "528": "hamburger",
654
+ "529": "hammer",
655
+ "530": "hammock",
656
+ "531": "hamper",
657
+ "532": "hamster",
658
+ "533": "hair_dryer",
659
+ "534": "hand_glass",
660
+ "535": "hand_towel",
661
+ "536": "handcart",
662
+ "537": "handcuff",
663
+ "538": "handkerchief",
664
+ "539": "handle",
665
+ "540": "handsaw",
666
+ "541": "hardback_book",
667
+ "542": "harmonium",
668
+ "543": "hat",
669
+ "544": "hatbox",
670
+ "545": "veil",
671
+ "546": "headband",
672
+ "547": "headboard",
673
+ "548": "headlight",
674
+ "549": "headscarf",
675
+ "550": "headset",
676
+ "551": "headstall_(for_horses)",
677
+ "552": "heart",
678
+ "553": "heater",
679
+ "554": "helicopter",
680
+ "555": "helmet",
681
+ "556": "heron",
682
+ "557": "highchair",
683
+ "558": "hinge",
684
+ "559": "hippopotamus",
685
+ "560": "hockey_stick",
686
+ "561": "hog",
687
+ "562": "home_plate_(baseball)",
688
+ "563": "honey",
689
+ "564": "fume_hood",
690
+ "565": "hook",
691
+ "566": "hookah",
692
+ "567": "hornet",
693
+ "568": "horse",
694
+ "569": "hose",
695
+ "570": "hot-air_balloon",
696
+ "571": "hotplate",
697
+ "572": "hot_sauce",
698
+ "573": "hourglass",
699
+ "574": "houseboat",
700
+ "575": "hummingbird",
701
+ "576": "hummus",
702
+ "577": "polar_bear",
703
+ "578": "icecream",
704
+ "579": "popsicle",
705
+ "580": "ice_maker",
706
+ "581": "ice_pack",
707
+ "582": "ice_skate",
708
+ "583": "igniter",
709
+ "584": "inhaler",
710
+ "585": "iPod",
711
+ "586": "iron_(for_clothing)",
712
+ "587": "ironing_board",
713
+ "588": "jacket",
714
+ "589": "jam",
715
+ "590": "jar",
716
+ "591": "jean",
717
+ "592": "jeep",
718
+ "593": "jelly_bean",
719
+ "594": "jersey",
720
+ "595": "jet_plane",
721
+ "596": "jewel",
722
+ "597": "jewelry",
723
+ "598": "joystick",
724
+ "599": "jumpsuit",
725
+ "600": "kayak",
726
+ "601": "keg",
727
+ "602": "kennel",
728
+ "603": "kettle",
729
+ "604": "key",
730
+ "605": "keycard",
731
+ "606": "kilt",
732
+ "607": "kimono",
733
+ "608": "kitchen_sink",
734
+ "609": "kitchen_table",
735
+ "610": "kite",
736
+ "611": "kitten",
737
+ "612": "kiwi_fruit",
738
+ "613": "knee_pad",
739
+ "614": "knife",
740
+ "615": "knitting_needle",
741
+ "616": "knob",
742
+ "617": "knocker_(on_a_door)",
743
+ "618": "koala",
744
+ "619": "lab_coat",
745
+ "620": "ladder",
746
+ "621": "ladle",
747
+ "622": "ladybug",
748
+ "623": "lamb_(animal)",
749
+ "624": "lamb-chop",
750
+ "625": "lamp",
751
+ "626": "lamppost",
752
+ "627": "lampshade",
753
+ "628": "lantern",
754
+ "629": "lanyard",
755
+ "630": "laptop_computer",
756
+ "631": "lasagna",
757
+ "632": "latch",
758
+ "633": "lawn_mower",
759
+ "634": "leather",
760
+ "635": "legging_(clothing)",
761
+ "636": "Lego",
762
+ "637": "legume",
763
+ "638": "lemon",
764
+ "639": "lemonade",
765
+ "640": "lettuce",
766
+ "641": "license_plate",
767
+ "642": "life_buoy",
768
+ "643": "life_jacket",
769
+ "644": "lightbulb",
770
+ "645": "lightning_rod",
771
+ "646": "lime",
772
+ "647": "limousine",
773
+ "648": "lion",
774
+ "649": "lip_balm",
775
+ "650": "liquor",
776
+ "651": "lizard",
777
+ "652": "log",
778
+ "653": "lollipop",
779
+ "654": "speaker_(stero_equipment)",
780
+ "655": "loveseat",
781
+ "656": "machine_gun",
782
+ "657": "magazine",
783
+ "658": "magnet",
784
+ "659": "mail_slot",
785
+ "660": "mailbox_(at_home)",
786
+ "661": "mallard",
787
+ "662": "mallet",
788
+ "663": "mammoth",
789
+ "664": "manatee",
790
+ "665": "mandarin_orange",
791
+ "666": "manger",
792
+ "667": "manhole",
793
+ "668": "map",
794
+ "669": "marker",
795
+ "670": "martini",
796
+ "671": "mascot",
797
+ "672": "mashed_potato",
798
+ "673": "masher",
799
+ "674": "mask",
800
+ "675": "mast",
801
+ "676": "mat_(gym_equipment)",
802
+ "677": "matchbox",
803
+ "678": "mattress",
804
+ "679": "measuring_cup",
805
+ "680": "measuring_stick",
806
+ "681": "meatball",
807
+ "682": "medicine",
808
+ "683": "melon",
809
+ "684": "microphone",
810
+ "685": "microscope",
811
+ "686": "microwave_oven",
812
+ "687": "milestone",
813
+ "688": "milk",
814
+ "689": "milk_can",
815
+ "690": "milkshake",
816
+ "691": "minivan",
817
+ "692": "mint_candy",
818
+ "693": "mirror",
819
+ "694": "mitten",
820
+ "695": "mixer_(kitchen_tool)",
821
+ "696": "money",
822
+ "697": "monitor_(computer_equipment) computer_monitor",
823
+ "698": "monkey",
824
+ "699": "motor",
825
+ "700": "motor_scooter",
826
+ "701": "motor_vehicle",
827
+ "702": "motorcycle",
828
+ "703": "mound_(baseball)",
829
+ "704": "mouse_(computer_equipment)",
830
+ "705": "mousepad",
831
+ "706": "muffin",
832
+ "707": "mug",
833
+ "708": "mushroom",
834
+ "709": "music_stool",
835
+ "710": "musical_instrument",
836
+ "711": "nailfile",
837
+ "712": "napkin",
838
+ "713": "neckerchief",
839
+ "714": "necklace",
840
+ "715": "necktie",
841
+ "716": "needle",
842
+ "717": "nest",
843
+ "718": "newspaper",
844
+ "719": "newsstand",
845
+ "720": "nightshirt",
846
+ "721": "nosebag_(for_animals)",
847
+ "722": "noseband_(for_animals)",
848
+ "723": "notebook",
849
+ "724": "notepad",
850
+ "725": "nut",
851
+ "726": "nutcracker",
852
+ "727": "oar",
853
+ "728": "octopus_(food)",
854
+ "729": "octopus_(animal)",
855
+ "730": "oil_lamp",
856
+ "731": "olive_oil",
857
+ "732": "omelet",
858
+ "733": "onion",
859
+ "734": "orange_(fruit)",
860
+ "735": "orange_juice",
861
+ "736": "ostrich",
862
+ "737": "ottoman",
863
+ "738": "oven",
864
+ "739": "overalls_(clothing)",
865
+ "740": "owl",
866
+ "741": "packet",
867
+ "742": "inkpad",
868
+ "743": "pad",
869
+ "744": "paddle",
870
+ "745": "padlock",
871
+ "746": "paintbrush",
872
+ "747": "painting",
873
+ "748": "pajamas",
874
+ "749": "palette",
875
+ "750": "pan_(for_cooking)",
876
+ "751": "pan_(metal_container)",
877
+ "752": "pancake",
878
+ "753": "pantyhose",
879
+ "754": "papaya",
880
+ "755": "paper_plate",
881
+ "756": "paper_towel",
882
+ "757": "paperback_book",
883
+ "758": "paperweight",
884
+ "759": "parachute",
885
+ "760": "parakeet",
886
+ "761": "parasail_(sports)",
887
+ "762": "parasol",
888
+ "763": "parchment",
889
+ "764": "parka",
890
+ "765": "parking_meter",
891
+ "766": "parrot",
892
+ "767": "passenger_car_(part_of_a_train)",
893
+ "768": "passenger_ship",
894
+ "769": "passport",
895
+ "770": "pastry",
896
+ "771": "patty_(food)",
897
+ "772": "pea_(food)",
898
+ "773": "peach",
899
+ "774": "peanut_butter",
900
+ "775": "pear",
901
+ "776": "peeler_(tool_for_fruit_and_vegetables)",
902
+ "777": "wooden_leg",
903
+ "778": "pegboard",
904
+ "779": "pelican",
905
+ "780": "pen",
906
+ "781": "pencil",
907
+ "782": "pencil_box",
908
+ "783": "pencil_sharpener",
909
+ "784": "pendulum",
910
+ "785": "penguin",
911
+ "786": "pennant",
912
+ "787": "penny_(coin)",
913
+ "788": "pepper",
914
+ "789": "pepper_mill",
915
+ "790": "perfume",
916
+ "791": "persimmon",
917
+ "792": "person",
918
+ "793": "pet",
919
+ "794": "pew_(church_bench)",
920
+ "795": "phonebook",
921
+ "796": "phonograph_record",
922
+ "797": "piano",
923
+ "798": "pickle",
924
+ "799": "pickup_truck",
925
+ "800": "pie",
926
+ "801": "pigeon",
927
+ "802": "piggy_bank",
928
+ "803": "pillow",
929
+ "804": "pin_(non_jewelry)",
930
+ "805": "pineapple",
931
+ "806": "pinecone",
932
+ "807": "ping-pong_ball",
933
+ "808": "pinwheel",
934
+ "809": "tobacco_pipe",
935
+ "810": "pipe",
936
+ "811": "pistol",
937
+ "812": "pita_(bread)",
938
+ "813": "pitcher_(vessel_for_liquid)",
939
+ "814": "pitchfork",
940
+ "815": "pizza",
941
+ "816": "place_mat",
942
+ "817": "plate",
943
+ "818": "platter",
944
+ "819": "playpen",
945
+ "820": "pliers",
946
+ "821": "plow_(farm_equipment)",
947
+ "822": "plume",
948
+ "823": "pocket_watch",
949
+ "824": "pocketknife",
950
+ "825": "poker_(fire_stirring_tool)",
951
+ "826": "pole",
952
+ "827": "polo_shirt",
953
+ "828": "poncho",
954
+ "829": "pony",
955
+ "830": "pool_table",
956
+ "831": "pop_(soda)",
957
+ "832": "postbox_(public)",
958
+ "833": "postcard",
959
+ "834": "poster",
960
+ "835": "pot",
961
+ "836": "flowerpot",
962
+ "837": "potato",
963
+ "838": "potholder",
964
+ "839": "pottery",
965
+ "840": "pouch",
966
+ "841": "power_shovel",
967
+ "842": "prawn",
968
+ "843": "pretzel",
969
+ "844": "printer",
970
+ "845": "projectile_(weapon)",
971
+ "846": "projector",
972
+ "847": "propeller",
973
+ "848": "prune",
974
+ "849": "pudding",
975
+ "850": "puffer_(fish)",
976
+ "851": "puffin",
977
+ "852": "pug-dog",
978
+ "853": "pumpkin",
979
+ "854": "puncher",
980
+ "855": "puppet",
981
+ "856": "puppy",
982
+ "857": "quesadilla",
983
+ "858": "quiche",
984
+ "859": "quilt",
985
+ "860": "rabbit",
986
+ "861": "race_car",
987
+ "862": "racket",
988
+ "863": "radar",
989
+ "864": "radiator",
990
+ "865": "radio_receiver",
991
+ "866": "radish",
992
+ "867": "raft",
993
+ "868": "rag_doll",
994
+ "869": "raincoat",
995
+ "870": "ram_(animal)",
996
+ "871": "raspberry",
997
+ "872": "rat",
998
+ "873": "razorblade",
999
+ "874": "reamer_(juicer)",
1000
+ "875": "rearview_mirror",
1001
+ "876": "receipt",
1002
+ "877": "recliner",
1003
+ "878": "record_player",
1004
+ "879": "reflector",
1005
+ "880": "remote_control",
1006
+ "881": "rhinoceros",
1007
+ "882": "rib_(food)",
1008
+ "883": "rifle",
1009
+ "884": "ring",
1010
+ "885": "river_boat",
1011
+ "886": "road_map",
1012
+ "887": "robe",
1013
+ "888": "rocking_chair",
1014
+ "889": "rodent",
1015
+ "890": "roller_skate",
1016
+ "891": "Rollerblade",
1017
+ "892": "rolling_pin",
1018
+ "893": "root_beer",
1019
+ "894": "router_(computer_equipment)",
1020
+ "895": "rubber_band",
1021
+ "896": "runner_(carpet)",
1022
+ "897": "plastic_bag",
1023
+ "898": "saddle_(on_an_animal)",
1024
+ "899": "saddle_blanket",
1025
+ "900": "saddlebag",
1026
+ "901": "safety_pin",
1027
+ "902": "sail",
1028
+ "903": "salad",
1029
+ "904": "salad_plate",
1030
+ "905": "salami",
1031
+ "906": "salmon_(fish)",
1032
+ "907": "salmon_(food)",
1033
+ "908": "salsa",
1034
+ "909": "saltshaker",
1035
+ "910": "sandal_(type_of_shoe)",
1036
+ "911": "sandwich",
1037
+ "912": "satchel",
1038
+ "913": "saucepan",
1039
+ "914": "saucer",
1040
+ "915": "sausage",
1041
+ "916": "sawhorse",
1042
+ "917": "saxophone",
1043
+ "918": "scale_(measuring_instrument)",
1044
+ "919": "scarecrow",
1045
+ "920": "scarf",
1046
+ "921": "school_bus",
1047
+ "922": "scissors",
1048
+ "923": "scoreboard",
1049
+ "924": "scraper",
1050
+ "925": "screwdriver",
1051
+ "926": "scrubbing_brush",
1052
+ "927": "sculpture",
1053
+ "928": "seabird",
1054
+ "929": "seahorse",
1055
+ "930": "seaplane",
1056
+ "931": "seashell",
1057
+ "932": "sewing_machine",
1058
+ "933": "shaker",
1059
+ "934": "shampoo",
1060
+ "935": "shark",
1061
+ "936": "sharpener",
1062
+ "937": "Sharpie",
1063
+ "938": "shaver_(electric)",
1064
+ "939": "shaving_cream",
1065
+ "940": "shawl",
1066
+ "941": "shears",
1067
+ "942": "sheep",
1068
+ "943": "shepherd_dog",
1069
+ "944": "sherbert",
1070
+ "945": "shield",
1071
+ "946": "shirt",
1072
+ "947": "shoe",
1073
+ "948": "shopping_bag",
1074
+ "949": "shopping_cart",
1075
+ "950": "short_pants",
1076
+ "951": "shot_glass",
1077
+ "952": "shoulder_bag",
1078
+ "953": "shovel",
1079
+ "954": "shower_head",
1080
+ "955": "shower_cap",
1081
+ "956": "shower_curtain",
1082
+ "957": "shredder_(for_paper)",
1083
+ "958": "signboard",
1084
+ "959": "silo",
1085
+ "960": "sink",
1086
+ "961": "skateboard",
1087
+ "962": "skewer",
1088
+ "963": "ski",
1089
+ "964": "ski_boot",
1090
+ "965": "ski_parka",
1091
+ "966": "ski_pole",
1092
+ "967": "skirt",
1093
+ "968": "skullcap",
1094
+ "969": "sled",
1095
+ "970": "sleeping_bag",
1096
+ "971": "sling_(bandage)",
1097
+ "972": "slipper_(footwear)",
1098
+ "973": "smoothie",
1099
+ "974": "snake",
1100
+ "975": "snowboard",
1101
+ "976": "snowman",
1102
+ "977": "snowmobile",
1103
+ "978": "soap",
1104
+ "979": "soccer_ball",
1105
+ "980": "sock",
1106
+ "981": "sofa",
1107
+ "982": "softball",
1108
+ "983": "solar_array",
1109
+ "984": "sombrero",
1110
+ "985": "soup",
1111
+ "986": "soup_bowl",
1112
+ "987": "soupspoon",
1113
+ "988": "sour_cream",
1114
+ "989": "soya_milk",
1115
+ "990": "space_shuttle",
1116
+ "991": "sparkler_(fireworks)",
1117
+ "992": "spatula",
1118
+ "993": "spear",
1119
+ "994": "spectacles",
1120
+ "995": "spice_rack",
1121
+ "996": "spider",
1122
+ "997": "crawfish",
1123
+ "998": "sponge",
1124
+ "999": "spoon",
1125
+ "1000": "sportswear",
1126
+ "1001": "spotlight",
1127
+ "1002": "squid_(food)",
1128
+ "1003": "squirrel",
1129
+ "1004": "stagecoach",
1130
+ "1005": "stapler_(stapling_machine)",
1131
+ "1006": "starfish",
1132
+ "1007": "statue_(sculpture)",
1133
+ "1008": "steak_(food)",
1134
+ "1009": "steak_knife",
1135
+ "1010": "steering_wheel",
1136
+ "1011": "stepladder",
1137
+ "1012": "step_stool",
1138
+ "1013": "stereo_(sound_system)",
1139
+ "1014": "stew",
1140
+ "1015": "stirrer",
1141
+ "1016": "stirrup",
1142
+ "1017": "stool",
1143
+ "1018": "stop_sign",
1144
+ "1019": "brake_light",
1145
+ "1020": "stove",
1146
+ "1021": "strainer",
1147
+ "1022": "strap",
1148
+ "1023": "straw_(for_drinking)",
1149
+ "1024": "strawberry",
1150
+ "1025": "street_sign",
1151
+ "1026": "streetlight",
1152
+ "1027": "string_cheese",
1153
+ "1028": "stylus",
1154
+ "1029": "subwoofer",
1155
+ "1030": "sugar_bowl",
1156
+ "1031": "sugarcane_(plant)",
1157
+ "1032": "suit_(clothing)",
1158
+ "1033": "sunflower",
1159
+ "1034": "sunglasses",
1160
+ "1035": "sunhat",
1161
+ "1036": "surfboard",
1162
+ "1037": "sushi",
1163
+ "1038": "mop",
1164
+ "1039": "sweat_pants",
1165
+ "1040": "sweatband",
1166
+ "1041": "sweater",
1167
+ "1042": "sweatshirt",
1168
+ "1043": "sweet_potato",
1169
+ "1044": "swimsuit",
1170
+ "1045": "sword",
1171
+ "1046": "syringe",
1172
+ "1047": "Tabasco_sauce",
1173
+ "1048": "table-tennis_table",
1174
+ "1049": "table",
1175
+ "1050": "table_lamp",
1176
+ "1051": "tablecloth",
1177
+ "1052": "tachometer",
1178
+ "1053": "taco",
1179
+ "1054": "tag",
1180
+ "1055": "taillight",
1181
+ "1056": "tambourine",
1182
+ "1057": "army_tank",
1183
+ "1058": "tank_(storage_vessel)",
1184
+ "1059": "tank_top_(clothing)",
1185
+ "1060": "tape_(sticky_cloth_or_paper)",
1186
+ "1061": "tape_measure",
1187
+ "1062": "tapestry",
1188
+ "1063": "tarp",
1189
+ "1064": "tartan",
1190
+ "1065": "tassel",
1191
+ "1066": "tea_bag",
1192
+ "1067": "teacup",
1193
+ "1068": "teakettle",
1194
+ "1069": "teapot",
1195
+ "1070": "teddy_bear",
1196
+ "1071": "telephone",
1197
+ "1072": "telephone_booth",
1198
+ "1073": "telephone_pole",
1199
+ "1074": "telephoto_lens",
1200
+ "1075": "television_camera",
1201
+ "1076": "television_set",
1202
+ "1077": "tennis_ball",
1203
+ "1078": "tennis_racket",
1204
+ "1079": "tequila",
1205
+ "1080": "thermometer",
1206
+ "1081": "thermos_bottle",
1207
+ "1082": "thermostat",
1208
+ "1083": "thimble",
1209
+ "1084": "thread",
1210
+ "1085": "thumbtack",
1211
+ "1086": "tiara",
1212
+ "1087": "tiger",
1213
+ "1088": "tights_(clothing)",
1214
+ "1089": "timer",
1215
+ "1090": "tinfoil",
1216
+ "1091": "tinsel",
1217
+ "1092": "tissue_paper",
1218
+ "1093": "toast_(food)",
1219
+ "1094": "toaster",
1220
+ "1095": "toaster_oven",
1221
+ "1096": "toilet",
1222
+ "1097": "toilet_tissue",
1223
+ "1098": "tomato",
1224
+ "1099": "tongs",
1225
+ "1100": "toolbox",
1226
+ "1101": "toothbrush",
1227
+ "1102": "toothpaste",
1228
+ "1103": "toothpick",
1229
+ "1104": "cover",
1230
+ "1105": "tortilla",
1231
+ "1106": "tow_truck",
1232
+ "1107": "towel",
1233
+ "1108": "towel_rack",
1234
+ "1109": "toy",
1235
+ "1110": "tractor_(farm_equipment)",
1236
+ "1111": "traffic_light",
1237
+ "1112": "dirt_bike",
1238
+ "1113": "trailer_truck",
1239
+ "1114": "train_(railroad_vehicle)",
1240
+ "1115": "trampoline",
1241
+ "1116": "tray",
1242
+ "1117": "trench_coat",
1243
+ "1118": "triangle_(musical_instrument)",
1244
+ "1119": "tricycle",
1245
+ "1120": "tripod",
1246
+ "1121": "trousers",
1247
+ "1122": "truck",
1248
+ "1123": "truffle_(chocolate)",
1249
+ "1124": "trunk",
1250
+ "1125": "vat",
1251
+ "1126": "turban",
1252
+ "1127": "turkey_(food)",
1253
+ "1128": "turnip",
1254
+ "1129": "turtle",
1255
+ "1130": "turtleneck_(clothing)",
1256
+ "1131": "typewriter",
1257
+ "1132": "umbrella",
1258
+ "1133": "underwear",
1259
+ "1134": "unicycle",
1260
+ "1135": "urinal",
1261
+ "1136": "urn",
1262
+ "1137": "vacuum_cleaner",
1263
+ "1138": "vase",
1264
+ "1139": "vending_machine",
1265
+ "1140": "vent",
1266
+ "1141": "vest",
1267
+ "1142": "videotape",
1268
+ "1143": "vinegar",
1269
+ "1144": "violin",
1270
+ "1145": "vodka",
1271
+ "1146": "volleyball",
1272
+ "1147": "vulture",
1273
+ "1148": "waffle",
1274
+ "1149": "waffle_iron",
1275
+ "1150": "wagon",
1276
+ "1151": "wagon_wheel",
1277
+ "1152": "walking_stick",
1278
+ "1153": "wall_clock",
1279
+ "1154": "wall_socket",
1280
+ "1155": "wallet",
1281
+ "1156": "walrus",
1282
+ "1157": "wardrobe",
1283
+ "1158": "washbasin",
1284
+ "1159": "automatic_washer",
1285
+ "1160": "watch",
1286
+ "1161": "water_bottle",
1287
+ "1162": "water_cooler",
1288
+ "1163": "water_faucet",
1289
+ "1164": "water_heater",
1290
+ "1165": "water_jug",
1291
+ "1166": "water_gun",
1292
+ "1167": "water_scooter",
1293
+ "1168": "water_ski",
1294
+ "1169": "water_tower",
1295
+ "1170": "watering_can",
1296
+ "1171": "watermelon",
1297
+ "1172": "weathervane",
1298
+ "1173": "webcam",
1299
+ "1174": "wedding_cake",
1300
+ "1175": "wedding_ring",
1301
+ "1176": "wet_suit",
1302
+ "1177": "wheel",
1303
+ "1178": "wheelchair",
1304
+ "1179": "whipped_cream",
1305
+ "1180": "whistle",
1306
+ "1181": "wig",
1307
+ "1182": "wind_chime",
1308
+ "1183": "windmill",
1309
+ "1184": "window_box_(for_plants)",
1310
+ "1185": "windshield_wiper",
1311
+ "1186": "windsock",
1312
+ "1187": "wine_bottle",
1313
+ "1188": "wine_bucket",
1314
+ "1189": "wineglass",
1315
+ "1190": "blinder_(for_horses)",
1316
+ "1191": "wok",
1317
+ "1192": "wolf",
1318
+ "1193": "wooden_spoon",
1319
+ "1194": "wreath",
1320
+ "1195": "wrench",
1321
+ "1196": "wristband",
1322
+ "1197": "wristlet",
1323
+ "1198": "yacht",
1324
+ "1199": "yogurt",
1325
+ "1200": "yoke_(animal_equipment)",
1326
+ "1201": "zebra",
1327
+ "1202": "zucchini"
1328
+ },
1329
+ "init_std": 0.02,
1330
+ "init_xavier_std": 1.0,
1331
+ "is_encoder_decoder": true,
1332
+ "label2id": {
1333
+ "Band_Aid": 45,
1334
+ "Bible": 92,
1335
+ "CD_player": 227,
1336
+ "Christmas_tree": 254,
1337
+ "Dixie_cup": 376,
1338
+ "Ferris_wheel": 432,
1339
+ "French_toast": 471,
1340
+ "Lego": 636,
1341
+ "Rollerblade": 891,
1342
+ "Sharpie": 937,
1343
+ "Tabasco_sauce": 1047,
1344
+ "aerosol_can": 0,
1345
+ "air_conditioner": 1,
1346
+ "airplane": 2,
1347
+ "alarm_clock": 3,
1348
+ "alcohol": 4,
1349
+ "alligator": 5,
1350
+ "almond": 6,
1351
+ "ambulance": 7,
1352
+ "amplifier": 8,
1353
+ "anklet": 9,
1354
+ "antenna": 10,
1355
+ "apple": 11,
1356
+ "applesauce": 12,
1357
+ "apricot": 13,
1358
+ "apron": 14,
1359
+ "aquarium": 15,
1360
+ "arctic_(type_of_shoe)": 16,
1361
+ "armband": 17,
1362
+ "armchair": 18,
1363
+ "armoire": 19,
1364
+ "armor": 20,
1365
+ "army_tank": 1057,
1366
+ "artichoke": 21,
1367
+ "ashtray": 23,
1368
+ "asparagus": 24,
1369
+ "atomizer": 25,
1370
+ "automatic_washer": 1159,
1371
+ "avocado": 26,
1372
+ "award": 27,
1373
+ "awning": 28,
1374
+ "ax": 29,
1375
+ "baboon": 30,
1376
+ "baby_buggy": 31,
1377
+ "backpack": 33,
1378
+ "bagel": 36,
1379
+ "bagpipe": 37,
1380
+ "baguet": 38,
1381
+ "bait": 39,
1382
+ "ball": 40,
1383
+ "ballet_skirt": 41,
1384
+ "balloon": 42,
1385
+ "bamboo": 43,
1386
+ "banana": 44,
1387
+ "bandage": 46,
1388
+ "bandanna": 47,
1389
+ "banjo": 48,
1390
+ "banner": 49,
1391
+ "barbell": 50,
1392
+ "barge": 51,
1393
+ "barrel": 52,
1394
+ "barrette": 53,
1395
+ "barrow": 54,
1396
+ "baseball": 56,
1397
+ "baseball_base": 55,
1398
+ "baseball_bat": 57,
1399
+ "baseball_cap": 58,
1400
+ "baseball_glove": 59,
1401
+ "basket": 60,
1402
+ "basketball": 61,
1403
+ "basketball_backboard": 32,
1404
+ "bass_horn": 62,
1405
+ "bat_(animal)": 63,
1406
+ "bath_mat": 64,
1407
+ "bath_towel": 65,
1408
+ "bathrobe": 66,
1409
+ "bathtub": 67,
1410
+ "batter_(food)": 68,
1411
+ "battery": 69,
1412
+ "beachball": 70,
1413
+ "bead": 71,
1414
+ "bean_curd": 72,
1415
+ "beanbag": 73,
1416
+ "beanie": 74,
1417
+ "bear": 75,
1418
+ "bed": 76,
1419
+ "bedpan": 77,
1420
+ "bedspread": 78,
1421
+ "beef_(food)": 80,
1422
+ "beeper": 81,
1423
+ "beer_bottle": 82,
1424
+ "beer_can": 83,
1425
+ "beetle": 84,
1426
+ "bell": 85,
1427
+ "bell_pepper": 86,
1428
+ "belt": 87,
1429
+ "belt_buckle": 88,
1430
+ "bench": 89,
1431
+ "beret": 90,
1432
+ "bib": 91,
1433
+ "bicycle": 93,
1434
+ "billboard": 95,
1435
+ "binder": 96,
1436
+ "binoculars": 97,
1437
+ "bird": 98,
1438
+ "birdbath": 100,
1439
+ "birdcage": 101,
1440
+ "birdfeeder": 99,
1441
+ "birdhouse": 102,
1442
+ "birthday_cake": 103,
1443
+ "birthday_card": 104,
1444
+ "black_sheep": 106,
1445
+ "blackberry": 107,
1446
+ "blackboard": 108,
1447
+ "blanket": 109,
1448
+ "blazer": 110,
1449
+ "blender": 111,
1450
+ "blimp": 112,
1451
+ "blinder_(for_horses)": 1190,
1452
+ "blinker": 113,
1453
+ "blouse": 114,
1454
+ "blueberry": 115,
1455
+ "boat": 117,
1456
+ "bob": 118,
1457
+ "bobbin": 119,
1458
+ "bobby_pin": 120,
1459
+ "boiled_egg": 121,
1460
+ "bolo_tie": 122,
1461
+ "bolt": 124,
1462
+ "bonnet": 125,
1463
+ "book": 126,
1464
+ "bookcase": 127,
1465
+ "booklet": 128,
1466
+ "bookmark": 129,
1467
+ "boom_microphone": 130,
1468
+ "boot": 131,
1469
+ "bottle": 132,
1470
+ "bottle_cap": 203,
1471
+ "bottle_opener": 133,
1472
+ "bouquet": 134,
1473
+ "bow-tie": 137,
1474
+ "bow_(decorative_ribbons)": 136,
1475
+ "bow_(weapon)": 135,
1476
+ "bowl": 138,
1477
+ "bowler_hat": 140,
1478
+ "bowling_ball": 141,
1479
+ "box": 142,
1480
+ "boxing_glove": 143,
1481
+ "bracelet": 145,
1482
+ "brake_light": 1019,
1483
+ "brass_plaque": 146,
1484
+ "brassiere": 147,
1485
+ "bread": 149,
1486
+ "bread-bin": 148,
1487
+ "breechcloth": 150,
1488
+ "bridal_gown": 151,
1489
+ "briefcase": 152,
1490
+ "broach": 154,
1491
+ "broccoli": 153,
1492
+ "broom": 155,
1493
+ "brownie": 156,
1494
+ "brussels_sprouts": 157,
1495
+ "bubble_gum": 158,
1496
+ "bucket": 159,
1497
+ "bull": 161,
1498
+ "bulldog": 162,
1499
+ "bulldozer": 163,
1500
+ "bullet_train": 164,
1501
+ "bulletin_board": 165,
1502
+ "bulletproof_vest": 166,
1503
+ "bullhorn": 167,
1504
+ "bun": 168,
1505
+ "bunk_bed": 169,
1506
+ "buoy": 170,
1507
+ "burrito": 171,
1508
+ "bus_(vehicle)": 172,
1509
+ "business_card": 173,
1510
+ "butter": 174,
1511
+ "butterfly": 175,
1512
+ "button": 176,
1513
+ "cab_(taxi)": 177,
1514
+ "cabana": 178,
1515
+ "cabin_car": 179,
1516
+ "cabinet": 180,
1517
+ "cake": 182,
1518
+ "calculator": 183,
1519
+ "calendar": 184,
1520
+ "calf": 185,
1521
+ "camcorder": 186,
1522
+ "camel": 187,
1523
+ "camera": 188,
1524
+ "camera_lens": 189,
1525
+ "camper_(vehicle)": 190,
1526
+ "can": 191,
1527
+ "can_opener": 192,
1528
+ "candle": 193,
1529
+ "candle_holder": 194,
1530
+ "candy_bar": 195,
1531
+ "candy_cane": 196,
1532
+ "canister": 198,
1533
+ "canoe": 199,
1534
+ "cantaloup": 200,
1535
+ "canteen": 201,
1536
+ "cap_(headwear)": 202,
1537
+ "cape": 204,
1538
+ "cappuccino": 205,
1539
+ "car_(automobile)": 206,
1540
+ "car_battery": 209,
1541
+ "card": 211,
1542
+ "cardigan": 212,
1543
+ "cargo_ship": 213,
1544
+ "carnation": 214,
1545
+ "carrot": 216,
1546
+ "cart": 218,
1547
+ "carton": 219,
1548
+ "cash_register": 220,
1549
+ "casserole": 221,
1550
+ "cassette": 222,
1551
+ "cast": 223,
1552
+ "cat": 224,
1553
+ "cauliflower": 225,
1554
+ "cayenne_(spice)": 226,
1555
+ "celery": 228,
1556
+ "cellular_telephone": 229,
1557
+ "chain_mail": 230,
1558
+ "chair": 231,
1559
+ "chaise_longue": 232,
1560
+ "chalice": 233,
1561
+ "chandelier": 234,
1562
+ "chap": 235,
1563
+ "checkbook": 236,
1564
+ "checkerboard": 237,
1565
+ "cherry": 238,
1566
+ "chessboard": 239,
1567
+ "chicken_(animal)": 240,
1568
+ "chickpea": 241,
1569
+ "chili_(vegetable)": 242,
1570
+ "chime": 243,
1571
+ "chinaware": 244,
1572
+ "chocolate_bar": 247,
1573
+ "chocolate_cake": 248,
1574
+ "chocolate_milk": 249,
1575
+ "chocolate_mousse": 250,
1576
+ "choker": 251,
1577
+ "chopping_board": 252,
1578
+ "chopstick": 253,
1579
+ "cider": 256,
1580
+ "cigar_box": 257,
1581
+ "cigarette": 258,
1582
+ "cigarette_case": 259,
1583
+ "cincture": 496,
1584
+ "cistern": 260,
1585
+ "clarinet": 261,
1586
+ "clasp": 262,
1587
+ "cleansing_agent": 263,
1588
+ "cleat_(for_securing_rope)": 264,
1589
+ "clementine": 265,
1590
+ "clip": 266,
1591
+ "clipboard": 267,
1592
+ "clippers_(for_plants)": 268,
1593
+ "cloak": 269,
1594
+ "clock": 270,
1595
+ "clock_tower": 271,
1596
+ "clothes_hamper": 272,
1597
+ "clothespin": 273,
1598
+ "clutch_bag": 274,
1599
+ "coaster": 275,
1600
+ "coat": 276,
1601
+ "coat_hanger": 277,
1602
+ "coatrack": 278,
1603
+ "cock": 279,
1604
+ "cockroach": 280,
1605
+ "cocoa_(beverage)": 281,
1606
+ "coconut": 282,
1607
+ "coffee_maker": 283,
1608
+ "coffee_table": 284,
1609
+ "coffeepot": 285,
1610
+ "coil": 286,
1611
+ "coin": 287,
1612
+ "colander": 288,
1613
+ "coleslaw": 289,
1614
+ "coloring_material": 290,
1615
+ "combination_lock": 291,
1616
+ "comic_book": 293,
1617
+ "compass": 294,
1618
+ "computer_keyboard": 295,
1619
+ "condiment": 296,
1620
+ "cone": 297,
1621
+ "control": 298,
1622
+ "convertible_(automobile)": 299,
1623
+ "cooker": 301,
1624
+ "cookie": 302,
1625
+ "cooking_utensil": 303,
1626
+ "cooler_(for_food)": 304,
1627
+ "cork_(bottle_plug)": 305,
1628
+ "corkboard": 306,
1629
+ "corkscrew": 307,
1630
+ "cornbread": 309,
1631
+ "cornet": 310,
1632
+ "cornice": 311,
1633
+ "cornmeal": 312,
1634
+ "corset": 313,
1635
+ "costume": 314,
1636
+ "cougar": 315,
1637
+ "cover": 1104,
1638
+ "coverall": 316,
1639
+ "cow": 79,
1640
+ "cowbell": 317,
1641
+ "cowboy_hat": 318,
1642
+ "crab_(animal)": 319,
1643
+ "crabmeat": 320,
1644
+ "cracker": 321,
1645
+ "crape": 322,
1646
+ "crate": 323,
1647
+ "crawfish": 997,
1648
+ "crayon": 324,
1649
+ "cream_pitcher": 325,
1650
+ "crescent_roll": 326,
1651
+ "crib": 327,
1652
+ "crisp_(potato_chip)": 245,
1653
+ "crock_pot": 328,
1654
+ "crossbar": 329,
1655
+ "crouton": 330,
1656
+ "crow": 331,
1657
+ "crowbar": 332,
1658
+ "crown": 333,
1659
+ "crucifix": 334,
1660
+ "cruise_ship": 335,
1661
+ "crumb": 337,
1662
+ "crutch": 338,
1663
+ "cub_(animal)": 339,
1664
+ "cube": 340,
1665
+ "cucumber": 341,
1666
+ "cufflink": 342,
1667
+ "cup": 343,
1668
+ "cupboard": 345,
1669
+ "cupcake": 346,
1670
+ "curling_iron": 348,
1671
+ "curtain": 349,
1672
+ "cushion": 350,
1673
+ "cylinder": 351,
1674
+ "cymbal": 352,
1675
+ "dagger": 353,
1676
+ "dalmatian": 354,
1677
+ "dartboard": 355,
1678
+ "date_(fruit)": 356,
1679
+ "deadbolt": 123,
1680
+ "deck_chair": 357,
1681
+ "deer": 358,
1682
+ "dental_floss": 359,
1683
+ "desk": 360,
1684
+ "detergent": 361,
1685
+ "diaper": 362,
1686
+ "diary": 363,
1687
+ "die": 364,
1688
+ "dinghy": 365,
1689
+ "dining_table": 366,
1690
+ "dirt_bike": 1112,
1691
+ "dish": 368,
1692
+ "dish_antenna": 369,
1693
+ "dishrag": 370,
1694
+ "dishtowel": 371,
1695
+ "dishwasher": 372,
1696
+ "dishwasher_detergent": 373,
1697
+ "dispenser": 374,
1698
+ "diving_board": 375,
1699
+ "dog": 377,
1700
+ "dog_collar": 378,
1701
+ "doll": 379,
1702
+ "dollar": 380,
1703
+ "dollhouse": 381,
1704
+ "dolphin": 382,
1705
+ "domestic_ass": 383,
1706
+ "doorknob": 384,
1707
+ "doormat": 385,
1708
+ "doughnut": 386,
1709
+ "dove": 387,
1710
+ "dragonfly": 388,
1711
+ "drawer": 389,
1712
+ "dress": 391,
1713
+ "dress_hat": 392,
1714
+ "dress_suit": 393,
1715
+ "dresser": 394,
1716
+ "drill": 395,
1717
+ "drone": 396,
1718
+ "dropper": 397,
1719
+ "drum_(musical_instrument)": 398,
1720
+ "drumstick": 399,
1721
+ "duck": 400,
1722
+ "duckling": 401,
1723
+ "duct_tape": 402,
1724
+ "duffel_bag": 403,
1725
+ "dumbbell": 404,
1726
+ "dumpster": 405,
1727
+ "dustpan": 406,
1728
+ "eagle": 407,
1729
+ "earphone": 408,
1730
+ "earplug": 409,
1731
+ "earring": 410,
1732
+ "easel": 411,
1733
+ "eclair": 412,
1734
+ "edible_corn": 308,
1735
+ "eel": 413,
1736
+ "egg": 414,
1737
+ "egg_roll": 415,
1738
+ "egg_yolk": 416,
1739
+ "eggbeater": 417,
1740
+ "eggplant": 418,
1741
+ "electric_chair": 419,
1742
+ "elephant": 421,
1743
+ "elevator_car": 208,
1744
+ "elk": 422,
1745
+ "envelope": 423,
1746
+ "eraser": 424,
1747
+ "escargot": 425,
1748
+ "eyepatch": 426,
1749
+ "falcon": 427,
1750
+ "fan": 428,
1751
+ "faucet": 429,
1752
+ "fedora": 430,
1753
+ "ferret": 431,
1754
+ "ferry": 433,
1755
+ "fig_(fruit)": 434,
1756
+ "fighter_jet": 435,
1757
+ "figurine": 436,
1758
+ "file_(tool)": 438,
1759
+ "file_cabinet": 437,
1760
+ "fire_alarm": 439,
1761
+ "fire_engine": 440,
1762
+ "fire_extinguisher": 441,
1763
+ "fire_hose": 442,
1764
+ "fireplace": 443,
1765
+ "fireplug": 444,
1766
+ "first-aid_kit": 445,
1767
+ "fish": 446,
1768
+ "fish_(food)": 447,
1769
+ "fishbowl": 448,
1770
+ "fishing_rod": 449,
1771
+ "flag": 450,
1772
+ "flagpole": 451,
1773
+ "flamingo": 452,
1774
+ "flannel": 453,
1775
+ "flap": 454,
1776
+ "flash": 455,
1777
+ "flashlight": 456,
1778
+ "fleece": 457,
1779
+ "flip-flop_(sandal)": 458,
1780
+ "flipper_(footwear)": 459,
1781
+ "flower_arrangement": 460,
1782
+ "flowerpot": 836,
1783
+ "flute_glass": 461,
1784
+ "foal": 462,
1785
+ "folding_chair": 463,
1786
+ "food_processor": 464,
1787
+ "football_(American)": 465,
1788
+ "football_helmet": 466,
1789
+ "footstool": 467,
1790
+ "fork": 468,
1791
+ "forklift": 469,
1792
+ "freight_car": 470,
1793
+ "freshener": 472,
1794
+ "frisbee": 473,
1795
+ "frog": 474,
1796
+ "fruit_juice": 475,
1797
+ "frying_pan": 476,
1798
+ "fudge": 477,
1799
+ "fume_hood": 564,
1800
+ "funnel": 478,
1801
+ "futon": 479,
1802
+ "gag": 480,
1803
+ "gameboard": 116,
1804
+ "garbage": 481,
1805
+ "garbage_truck": 482,
1806
+ "garden_hose": 483,
1807
+ "gargle": 484,
1808
+ "gargoyle": 485,
1809
+ "garlic": 486,
1810
+ "gasmask": 487,
1811
+ "gazelle": 488,
1812
+ "gelatin": 489,
1813
+ "gemstone": 490,
1814
+ "generator": 491,
1815
+ "giant_panda": 492,
1816
+ "gift_wrap": 493,
1817
+ "ginger": 494,
1818
+ "giraffe": 495,
1819
+ "glass_(drink_container)": 497,
1820
+ "globe": 498,
1821
+ "glove": 499,
1822
+ "goat": 500,
1823
+ "goggles": 501,
1824
+ "goldfish": 502,
1825
+ "golf_club": 503,
1826
+ "golfcart": 504,
1827
+ "gondola_(boat)": 505,
1828
+ "goose": 506,
1829
+ "gorilla": 507,
1830
+ "gourd": 508,
1831
+ "grape": 509,
1832
+ "grater": 510,
1833
+ "gravestone": 511,
1834
+ "gravy_boat": 512,
1835
+ "green_bean": 513,
1836
+ "green_onion": 514,
1837
+ "griddle": 515,
1838
+ "grill": 516,
1839
+ "grits": 517,
1840
+ "grizzly": 518,
1841
+ "grocery_bag": 519,
1842
+ "guitar": 520,
1843
+ "gull": 521,
1844
+ "gun": 522,
1845
+ "hair_curler": 347,
1846
+ "hair_dryer": 533,
1847
+ "hairbrush": 523,
1848
+ "hairnet": 524,
1849
+ "hairpin": 525,
1850
+ "halter_top": 526,
1851
+ "ham": 527,
1852
+ "hamburger": 528,
1853
+ "hammer": 529,
1854
+ "hammock": 530,
1855
+ "hamper": 531,
1856
+ "hamster": 532,
1857
+ "hand_glass": 534,
1858
+ "hand_towel": 535,
1859
+ "handbag": 34,
1860
+ "handcart": 536,
1861
+ "handcuff": 537,
1862
+ "handkerchief": 538,
1863
+ "handle": 539,
1864
+ "handsaw": 540,
1865
+ "hardback_book": 541,
1866
+ "harmonium": 542,
1867
+ "hat": 543,
1868
+ "hatbox": 544,
1869
+ "headband": 546,
1870
+ "headboard": 547,
1871
+ "headlight": 548,
1872
+ "headscarf": 549,
1873
+ "headset": 550,
1874
+ "headstall_(for_horses)": 551,
1875
+ "heart": 552,
1876
+ "heater": 553,
1877
+ "helicopter": 554,
1878
+ "helmet": 555,
1879
+ "heron": 556,
1880
+ "highchair": 557,
1881
+ "hinge": 558,
1882
+ "hippopotamus": 559,
1883
+ "hockey_stick": 560,
1884
+ "hog": 561,
1885
+ "home_plate_(baseball)": 562,
1886
+ "honey": 563,
1887
+ "hook": 565,
1888
+ "hookah": 566,
1889
+ "hornet": 567,
1890
+ "horse": 568,
1891
+ "horse_buggy": 160,
1892
+ "horse_carriage": 215,
1893
+ "hose": 569,
1894
+ "hot-air_balloon": 570,
1895
+ "hot_sauce": 572,
1896
+ "hotplate": 571,
1897
+ "hourglass": 573,
1898
+ "houseboat": 574,
1899
+ "hummingbird": 575,
1900
+ "hummus": 576,
1901
+ "iPod": 585,
1902
+ "ice_maker": 580,
1903
+ "ice_pack": 581,
1904
+ "ice_skate": 582,
1905
+ "icecream": 578,
1906
+ "identity_card": 210,
1907
+ "igniter": 583,
1908
+ "inhaler": 584,
1909
+ "inkpad": 742,
1910
+ "iron_(for_clothing)": 586,
1911
+ "ironing_board": 587,
1912
+ "jacket": 588,
1913
+ "jam": 589,
1914
+ "jar": 590,
1915
+ "jean": 591,
1916
+ "jeep": 592,
1917
+ "jelly_bean": 593,
1918
+ "jersey": 594,
1919
+ "jet_plane": 595,
1920
+ "jewel": 596,
1921
+ "jewelry": 597,
1922
+ "joystick": 598,
1923
+ "jumpsuit": 599,
1924
+ "kayak": 600,
1925
+ "keg": 601,
1926
+ "kennel": 602,
1927
+ "kettle": 603,
1928
+ "key": 604,
1929
+ "keycard": 605,
1930
+ "kilt": 606,
1931
+ "kimono": 607,
1932
+ "kitchen_sink": 608,
1933
+ "kitchen_table": 609,
1934
+ "kite": 610,
1935
+ "kitten": 611,
1936
+ "kiwi_fruit": 612,
1937
+ "knee_pad": 613,
1938
+ "knife": 614,
1939
+ "knitting_needle": 615,
1940
+ "knob": 616,
1941
+ "knocker_(on_a_door)": 617,
1942
+ "koala": 618,
1943
+ "lab_coat": 619,
1944
+ "ladder": 620,
1945
+ "ladle": 621,
1946
+ "ladybug": 622,
1947
+ "lamb-chop": 624,
1948
+ "lamb_(animal)": 623,
1949
+ "lamp": 625,
1950
+ "lamppost": 626,
1951
+ "lampshade": 627,
1952
+ "lantern": 628,
1953
+ "lanyard": 629,
1954
+ "laptop_computer": 630,
1955
+ "lasagna": 631,
1956
+ "latch": 632,
1957
+ "lawn_mower": 633,
1958
+ "leather": 634,
1959
+ "legging_(clothing)": 635,
1960
+ "legume": 637,
1961
+ "lemon": 638,
1962
+ "lemonade": 639,
1963
+ "lettuce": 640,
1964
+ "license_plate": 641,
1965
+ "life_buoy": 642,
1966
+ "life_jacket": 643,
1967
+ "lightbulb": 644,
1968
+ "lightning_rod": 645,
1969
+ "lime": 646,
1970
+ "limousine": 647,
1971
+ "lion": 648,
1972
+ "lip_balm": 649,
1973
+ "liquor": 650,
1974
+ "lizard": 651,
1975
+ "locker": 181,
1976
+ "log": 652,
1977
+ "lollipop": 653,
1978
+ "loveseat": 655,
1979
+ "machine_gun": 656,
1980
+ "magazine": 657,
1981
+ "magnet": 658,
1982
+ "mail_slot": 659,
1983
+ "mailbox_(at_home)": 660,
1984
+ "mallard": 661,
1985
+ "mallet": 662,
1986
+ "mammoth": 663,
1987
+ "manatee": 664,
1988
+ "mandarin_orange": 665,
1989
+ "manger": 666,
1990
+ "manhole": 667,
1991
+ "map": 668,
1992
+ "marker": 669,
1993
+ "martini": 670,
1994
+ "mascot": 671,
1995
+ "mashed_potato": 672,
1996
+ "masher": 673,
1997
+ "mask": 674,
1998
+ "mast": 675,
1999
+ "mat_(gym_equipment)": 676,
2000
+ "matchbox": 677,
2001
+ "mattress": 678,
2002
+ "measuring_cup": 679,
2003
+ "measuring_stick": 680,
2004
+ "meatball": 681,
2005
+ "medicine": 682,
2006
+ "melon": 683,
2007
+ "microphone": 684,
2008
+ "microscope": 685,
2009
+ "microwave_oven": 686,
2010
+ "milestone": 687,
2011
+ "milk": 688,
2012
+ "milk_can": 689,
2013
+ "milkshake": 690,
2014
+ "minivan": 691,
2015
+ "mint_candy": 692,
2016
+ "mirror": 693,
2017
+ "mitten": 694,
2018
+ "mixer_(kitchen_tool)": 695,
2019
+ "money": 696,
2020
+ "monitor_(computer_equipment) computer_monitor": 697,
2021
+ "monkey": 698,
2022
+ "mop": 1038,
2023
+ "motor": 699,
2024
+ "motor_scooter": 700,
2025
+ "motor_vehicle": 701,
2026
+ "motorcycle": 702,
2027
+ "mound_(baseball)": 703,
2028
+ "mouse_(computer_equipment)": 704,
2029
+ "mousepad": 705,
2030
+ "muffin": 706,
2031
+ "mug": 707,
2032
+ "mushroom": 708,
2033
+ "music_stool": 709,
2034
+ "musical_instrument": 710,
2035
+ "nailfile": 711,
2036
+ "napkin": 712,
2037
+ "neckerchief": 713,
2038
+ "necklace": 714,
2039
+ "necktie": 715,
2040
+ "needle": 716,
2041
+ "nest": 717,
2042
+ "newspaper": 718,
2043
+ "newsstand": 719,
2044
+ "nightshirt": 720,
2045
+ "nosebag_(for_animals)": 721,
2046
+ "noseband_(for_animals)": 722,
2047
+ "notebook": 723,
2048
+ "notepad": 724,
2049
+ "nut": 725,
2050
+ "nutcracker": 726,
2051
+ "oar": 727,
2052
+ "octopus_(animal)": 729,
2053
+ "octopus_(food)": 728,
2054
+ "oil_lamp": 730,
2055
+ "olive_oil": 731,
2056
+ "omelet": 732,
2057
+ "onion": 733,
2058
+ "orange_(fruit)": 734,
2059
+ "orange_juice": 735,
2060
+ "ostrich": 736,
2061
+ "ottoman": 737,
2062
+ "oven": 738,
2063
+ "overalls_(clothing)": 739,
2064
+ "owl": 740,
2065
+ "pacifier": 292,
2066
+ "packet": 741,
2067
+ "pad": 743,
2068
+ "paddle": 744,
2069
+ "padlock": 745,
2070
+ "paintbrush": 746,
2071
+ "painting": 747,
2072
+ "pajamas": 748,
2073
+ "palette": 749,
2074
+ "pan_(for_cooking)": 750,
2075
+ "pan_(metal_container)": 751,
2076
+ "pancake": 752,
2077
+ "pantyhose": 753,
2078
+ "papaya": 754,
2079
+ "paper_plate": 755,
2080
+ "paper_towel": 756,
2081
+ "paperback_book": 757,
2082
+ "paperweight": 758,
2083
+ "parachute": 759,
2084
+ "parakeet": 760,
2085
+ "parasail_(sports)": 761,
2086
+ "parasol": 762,
2087
+ "parchment": 763,
2088
+ "parka": 764,
2089
+ "parking_meter": 765,
2090
+ "parrot": 766,
2091
+ "passenger_car_(part_of_a_train)": 767,
2092
+ "passenger_ship": 768,
2093
+ "passport": 769,
2094
+ "pastry": 770,
2095
+ "patty_(food)": 771,
2096
+ "pea_(food)": 772,
2097
+ "peach": 773,
2098
+ "peanut_butter": 774,
2099
+ "pear": 775,
2100
+ "peeler_(tool_for_fruit_and_vegetables)": 776,
2101
+ "pegboard": 778,
2102
+ "pelican": 779,
2103
+ "pen": 780,
2104
+ "pencil": 781,
2105
+ "pencil_box": 782,
2106
+ "pencil_sharpener": 783,
2107
+ "pendulum": 784,
2108
+ "penguin": 785,
2109
+ "pennant": 786,
2110
+ "penny_(coin)": 787,
2111
+ "pepper": 788,
2112
+ "pepper_mill": 789,
2113
+ "perfume": 790,
2114
+ "persimmon": 791,
2115
+ "person": 792,
2116
+ "pet": 793,
2117
+ "pew_(church_bench)": 794,
2118
+ "phonebook": 795,
2119
+ "phonograph_record": 796,
2120
+ "piano": 797,
2121
+ "pickle": 798,
2122
+ "pickup_truck": 799,
2123
+ "pie": 800,
2124
+ "pigeon": 801,
2125
+ "piggy_bank": 802,
2126
+ "pillow": 803,
2127
+ "pin_(non_jewelry)": 804,
2128
+ "pineapple": 805,
2129
+ "pinecone": 806,
2130
+ "ping-pong_ball": 807,
2131
+ "pinwheel": 808,
2132
+ "pipe": 810,
2133
+ "pipe_bowl": 139,
2134
+ "pirate_flag": 105,
2135
+ "pistol": 811,
2136
+ "pita_(bread)": 812,
2137
+ "pitcher_(vessel_for_liquid)": 813,
2138
+ "pitchfork": 814,
2139
+ "pizza": 815,
2140
+ "place_mat": 816,
2141
+ "plastic_bag": 897,
2142
+ "plate": 817,
2143
+ "platter": 818,
2144
+ "playpen": 819,
2145
+ "pliers": 820,
2146
+ "plow_(farm_equipment)": 821,
2147
+ "plume": 822,
2148
+ "pocket_watch": 823,
2149
+ "pocketknife": 824,
2150
+ "poker_(fire_stirring_tool)": 825,
2151
+ "poker_chip": 246,
2152
+ "polar_bear": 577,
2153
+ "pole": 826,
2154
+ "police_cruiser": 336,
2155
+ "polo_shirt": 827,
2156
+ "poncho": 828,
2157
+ "pony": 829,
2158
+ "pool_table": 830,
2159
+ "pop_(soda)": 831,
2160
+ "popsicle": 579,
2161
+ "postbox_(public)": 832,
2162
+ "postcard": 833,
2163
+ "poster": 834,
2164
+ "pot": 835,
2165
+ "potato": 837,
2166
+ "potholder": 838,
2167
+ "pottery": 839,
2168
+ "pouch": 840,
2169
+ "power_shovel": 841,
2170
+ "prawn": 842,
2171
+ "pretzel": 843,
2172
+ "printer": 844,
2173
+ "projectile_(weapon)": 845,
2174
+ "projector": 846,
2175
+ "propeller": 847,
2176
+ "prune": 848,
2177
+ "pudding": 849,
2178
+ "puffer_(fish)": 850,
2179
+ "puffin": 851,
2180
+ "pug-dog": 852,
2181
+ "pumpkin": 853,
2182
+ "puncher": 854,
2183
+ "puppet": 855,
2184
+ "puppy": 856,
2185
+ "quesadilla": 857,
2186
+ "quiche": 858,
2187
+ "quilt": 859,
2188
+ "rabbit": 860,
2189
+ "race_car": 861,
2190
+ "racket": 862,
2191
+ "radar": 863,
2192
+ "radiator": 864,
2193
+ "radio_receiver": 865,
2194
+ "radish": 866,
2195
+ "raft": 867,
2196
+ "rag_doll": 868,
2197
+ "railcar_(part_of_a_train)": 207,
2198
+ "raincoat": 869,
2199
+ "ram_(animal)": 870,
2200
+ "raspberry": 871,
2201
+ "rat": 872,
2202
+ "razorblade": 873,
2203
+ "reamer_(juicer)": 874,
2204
+ "rearview_mirror": 875,
2205
+ "receipt": 876,
2206
+ "recliner": 877,
2207
+ "record_player": 878,
2208
+ "reflector": 879,
2209
+ "refrigerator": 420,
2210
+ "remote_control": 880,
2211
+ "rhinoceros": 881,
2212
+ "rib_(food)": 882,
2213
+ "rifle": 883,
2214
+ "ring": 884,
2215
+ "river_boat": 885,
2216
+ "road_map": 886,
2217
+ "robe": 887,
2218
+ "rocking_chair": 888,
2219
+ "rodent": 889,
2220
+ "roller_skate": 890,
2221
+ "rolling_pin": 892,
2222
+ "root_beer": 893,
2223
+ "router_(computer_equipment)": 894,
2224
+ "rubber_band": 895,
2225
+ "runner_(carpet)": 896,
2226
+ "saddle_(on_an_animal)": 898,
2227
+ "saddle_blanket": 899,
2228
+ "saddlebag": 900,
2229
+ "safety_pin": 901,
2230
+ "sail": 902,
2231
+ "salad": 903,
2232
+ "salad_plate": 904,
2233
+ "salami": 905,
2234
+ "salmon_(fish)": 906,
2235
+ "salmon_(food)": 907,
2236
+ "salsa": 908,
2237
+ "saltshaker": 909,
2238
+ "sandal_(type_of_shoe)": 910,
2239
+ "sandwich": 911,
2240
+ "satchel": 912,
2241
+ "saucepan": 913,
2242
+ "saucer": 914,
2243
+ "sausage": 915,
2244
+ "sawhorse": 916,
2245
+ "saxophone": 917,
2246
+ "scale_(measuring_instrument)": 918,
2247
+ "scarecrow": 919,
2248
+ "scarf": 920,
2249
+ "school_bus": 921,
2250
+ "scissors": 922,
2251
+ "scoreboard": 923,
2252
+ "scraper": 924,
2253
+ "screwdriver": 925,
2254
+ "scrubbing_brush": 926,
2255
+ "sculpture": 927,
2256
+ "seabird": 928,
2257
+ "seahorse": 929,
2258
+ "seaplane": 930,
2259
+ "seashell": 931,
2260
+ "sewing_machine": 932,
2261
+ "shaker": 933,
2262
+ "shampoo": 934,
2263
+ "shark": 935,
2264
+ "sharpener": 936,
2265
+ "shaver_(electric)": 938,
2266
+ "shaving_cream": 939,
2267
+ "shawl": 940,
2268
+ "shears": 941,
2269
+ "sheep": 942,
2270
+ "shepherd_dog": 943,
2271
+ "sherbert": 944,
2272
+ "shield": 945,
2273
+ "shirt": 946,
2274
+ "shoe": 947,
2275
+ "shopping_bag": 948,
2276
+ "shopping_cart": 949,
2277
+ "short_pants": 950,
2278
+ "shot_glass": 951,
2279
+ "shoulder_bag": 952,
2280
+ "shovel": 953,
2281
+ "shower_cap": 955,
2282
+ "shower_curtain": 956,
2283
+ "shower_head": 954,
2284
+ "shredder_(for_paper)": 957,
2285
+ "signboard": 958,
2286
+ "silo": 959,
2287
+ "sink": 960,
2288
+ "skateboard": 961,
2289
+ "skewer": 962,
2290
+ "ski": 963,
2291
+ "ski_boot": 964,
2292
+ "ski_parka": 965,
2293
+ "ski_pole": 966,
2294
+ "skirt": 967,
2295
+ "skullcap": 968,
2296
+ "sled": 969,
2297
+ "sleeping_bag": 970,
2298
+ "slide": 255,
2299
+ "sling_(bandage)": 971,
2300
+ "slipper_(footwear)": 972,
2301
+ "smoothie": 973,
2302
+ "snake": 974,
2303
+ "snowboard": 975,
2304
+ "snowman": 976,
2305
+ "snowmobile": 977,
2306
+ "soap": 978,
2307
+ "soccer_ball": 979,
2308
+ "sock": 980,
2309
+ "sofa": 981,
2310
+ "sofa_bed": 300,
2311
+ "softball": 982,
2312
+ "solar_array": 983,
2313
+ "sombrero": 984,
2314
+ "soup": 985,
2315
+ "soup_bowl": 986,
2316
+ "soupspoon": 987,
2317
+ "sour_cream": 988,
2318
+ "soya_milk": 989,
2319
+ "space_shuttle": 990,
2320
+ "sparkler_(fireworks)": 991,
2321
+ "spatula": 992,
2322
+ "speaker_(stero_equipment)": 654,
2323
+ "spear": 993,
2324
+ "spectacles": 994,
2325
+ "spice_rack": 995,
2326
+ "spider": 996,
2327
+ "sponge": 998,
2328
+ "spoon": 999,
2329
+ "sportswear": 1000,
2330
+ "spotlight": 1001,
2331
+ "squid_(food)": 1002,
2332
+ "squirrel": 1003,
2333
+ "stagecoach": 1004,
2334
+ "stapler_(stapling_machine)": 1005,
2335
+ "starfish": 1006,
2336
+ "statue_(sculpture)": 1007,
2337
+ "steak_(food)": 1008,
2338
+ "steak_knife": 1009,
2339
+ "steering_wheel": 1010,
2340
+ "step_stool": 1012,
2341
+ "stepladder": 1011,
2342
+ "stereo_(sound_system)": 1013,
2343
+ "stew": 1014,
2344
+ "stirrer": 1015,
2345
+ "stirrup": 1016,
2346
+ "stool": 1017,
2347
+ "stop_sign": 1018,
2348
+ "stove": 1020,
2349
+ "strainer": 1021,
2350
+ "strap": 1022,
2351
+ "straw_(for_drinking)": 1023,
2352
+ "strawberry": 1024,
2353
+ "street_sign": 1025,
2354
+ "streetlight": 1026,
2355
+ "string_cheese": 1027,
2356
+ "stylus": 1028,
2357
+ "subwoofer": 1029,
2358
+ "sugar_bowl": 1030,
2359
+ "sugarcane_(plant)": 1031,
2360
+ "suit_(clothing)": 1032,
2361
+ "suitcase": 35,
2362
+ "sunflower": 1033,
2363
+ "sunglasses": 1034,
2364
+ "sunhat": 1035,
2365
+ "surfboard": 1036,
2366
+ "sushi": 1037,
2367
+ "suspenders": 144,
2368
+ "sweat_pants": 1039,
2369
+ "sweatband": 1040,
2370
+ "sweater": 1041,
2371
+ "sweatshirt": 1042,
2372
+ "sweet_potato": 1043,
2373
+ "swimsuit": 1044,
2374
+ "sword": 1045,
2375
+ "syringe": 1046,
2376
+ "table": 1049,
2377
+ "table-tennis_table": 1048,
2378
+ "table_lamp": 1050,
2379
+ "tablecloth": 1051,
2380
+ "tachometer": 1052,
2381
+ "taco": 1053,
2382
+ "tag": 1054,
2383
+ "taillight": 1055,
2384
+ "tambourine": 1056,
2385
+ "tank_(storage_vessel)": 1058,
2386
+ "tank_top_(clothing)": 1059,
2387
+ "tape_(sticky_cloth_or_paper)": 1060,
2388
+ "tape_measure": 1061,
2389
+ "tapestry": 1062,
2390
+ "tarp": 1063,
2391
+ "tartan": 1064,
2392
+ "tassel": 1065,
2393
+ "tea_bag": 1066,
2394
+ "teacup": 1067,
2395
+ "teakettle": 1068,
2396
+ "teapot": 1069,
2397
+ "teddy_bear": 1070,
2398
+ "telephone": 1071,
2399
+ "telephone_booth": 1072,
2400
+ "telephone_pole": 1073,
2401
+ "telephoto_lens": 1074,
2402
+ "television_camera": 1075,
2403
+ "television_set": 1076,
2404
+ "tennis_ball": 1077,
2405
+ "tennis_racket": 1078,
2406
+ "tequila": 1079,
2407
+ "thermometer": 1080,
2408
+ "thermos_bottle": 1081,
2409
+ "thermostat": 1082,
2410
+ "thimble": 1083,
2411
+ "thread": 1084,
2412
+ "thumbtack": 1085,
2413
+ "tiara": 1086,
2414
+ "tiger": 1087,
2415
+ "tights_(clothing)": 1088,
2416
+ "timer": 1089,
2417
+ "tinfoil": 1090,
2418
+ "tinsel": 1091,
2419
+ "tissue_paper": 1092,
2420
+ "toast_(food)": 1093,
2421
+ "toaster": 1094,
2422
+ "toaster_oven": 1095,
2423
+ "tobacco_pipe": 809,
2424
+ "toilet": 1096,
2425
+ "toilet_tissue": 1097,
2426
+ "tomato": 1098,
2427
+ "tongs": 1099,
2428
+ "toolbox": 1100,
2429
+ "toothbrush": 1101,
2430
+ "toothpaste": 1102,
2431
+ "toothpick": 1103,
2432
+ "tortilla": 1105,
2433
+ "tote_bag": 217,
2434
+ "tow_truck": 1106,
2435
+ "towel": 1107,
2436
+ "towel_rack": 1108,
2437
+ "toy": 1109,
2438
+ "tractor_(farm_equipment)": 1110,
2439
+ "traffic_light": 1111,
2440
+ "trailer_truck": 1113,
2441
+ "train_(railroad_vehicle)": 1114,
2442
+ "trampoline": 1115,
2443
+ "trash_can": 22,
2444
+ "tray": 1116,
2445
+ "trench_coat": 1117,
2446
+ "triangle_(musical_instrument)": 1118,
2447
+ "tricycle": 1119,
2448
+ "tripod": 1120,
2449
+ "trophy_cup": 344,
2450
+ "trousers": 1121,
2451
+ "truck": 1122,
2452
+ "truffle_(chocolate)": 1123,
2453
+ "trunk": 1124,
2454
+ "turban": 1126,
2455
+ "turkey_(food)": 1127,
2456
+ "turnip": 1128,
2457
+ "turtle": 1129,
2458
+ "turtleneck_(clothing)": 1130,
2459
+ "tux": 367,
2460
+ "typewriter": 1131,
2461
+ "umbrella": 1132,
2462
+ "underdrawers": 390,
2463
+ "underwear": 1133,
2464
+ "unicycle": 1134,
2465
+ "urinal": 1135,
2466
+ "urn": 1136,
2467
+ "vacuum_cleaner": 1137,
2468
+ "vase": 1138,
2469
+ "vat": 1125,
2470
+ "veil": 545,
2471
+ "vending_machine": 1139,
2472
+ "vent": 1140,
2473
+ "vest": 1141,
2474
+ "videotape": 1142,
2475
+ "vinegar": 1143,
2476
+ "violin": 1144,
2477
+ "visor": 94,
2478
+ "vodka": 1145,
2479
+ "volleyball": 1146,
2480
+ "vulture": 1147,
2481
+ "waffle": 1148,
2482
+ "waffle_iron": 1149,
2483
+ "wagon": 1150,
2484
+ "wagon_wheel": 1151,
2485
+ "walking_cane": 197,
2486
+ "walking_stick": 1152,
2487
+ "wall_clock": 1153,
2488
+ "wall_socket": 1154,
2489
+ "wallet": 1155,
2490
+ "walrus": 1156,
2491
+ "wardrobe": 1157,
2492
+ "washbasin": 1158,
2493
+ "watch": 1160,
2494
+ "water_bottle": 1161,
2495
+ "water_cooler": 1162,
2496
+ "water_faucet": 1163,
2497
+ "water_gun": 1166,
2498
+ "water_heater": 1164,
2499
+ "water_jug": 1165,
2500
+ "water_scooter": 1167,
2501
+ "water_ski": 1168,
2502
+ "water_tower": 1169,
2503
+ "watering_can": 1170,
2504
+ "watermelon": 1171,
2505
+ "weathervane": 1172,
2506
+ "webcam": 1173,
2507
+ "wedding_cake": 1174,
2508
+ "wedding_ring": 1175,
2509
+ "wet_suit": 1176,
2510
+ "wheel": 1177,
2511
+ "wheelchair": 1178,
2512
+ "whipped_cream": 1179,
2513
+ "whistle": 1180,
2514
+ "wig": 1181,
2515
+ "wind_chime": 1182,
2516
+ "windmill": 1183,
2517
+ "window_box_(for_plants)": 1184,
2518
+ "windshield_wiper": 1185,
2519
+ "windsock": 1186,
2520
+ "wine_bottle": 1187,
2521
+ "wine_bucket": 1188,
2522
+ "wineglass": 1189,
2523
+ "wok": 1191,
2524
+ "wolf": 1192,
2525
+ "wooden_leg": 777,
2526
+ "wooden_spoon": 1193,
2527
+ "wreath": 1194,
2528
+ "wrench": 1195,
2529
+ "wristband": 1196,
2530
+ "wristlet": 1197,
2531
+ "yacht": 1198,
2532
+ "yogurt": 1199,
2533
+ "yoke_(animal_equipment)": 1200,
2534
+ "zebra": 1201,
2535
+ "zucchini": 1202
2536
+ },
2537
+ "mask_loss_coefficient": 1,
2538
+ "max_position_embeddings": 1024,
2539
+ "model_type": "deformable_detr",
2540
+ "num_channels": 3,
2541
+ "num_feature_levels": 4,
2542
+ "num_queries": 300,
2543
+ "position_embedding_type": "sine",
2544
+ "torch_dtype": "float32",
2545
+ "transformers_version": null,
2546
+ "two_stage": true,
2547
+ "two_stage_num_proposals": 300,
2548
+ "use_pretrained_backbone": null,
2549
+ "use_timm_backbone": false,
2550
+ "with_box_refine": true
2551
+ }
models/deformable-detr-detic/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1a5695ef80c4f68a6221d85d5e7d0b1da93f460a8c7594ebd9337ec60f0d11d
3
+ size 173233132
models/deformable-detr-detic/preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_pad": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "format": "coco_detection",
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_processor_type": "DeformableDetrImageProcessor",
13
+ "image_std": [
14
+ 0.229,
15
+ 0.224,
16
+ 0.225
17
+ ],
18
+ "resample": 2,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "longest_edge": 1333,
22
+ "shortest_edge": 800
23
+ }
24
+ }
models/deformable-detr-detic/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95c4baa499a5d6b2829007bb626c80553ec081110dfa328659f939f15db7edb0
3
+ size 173365669
models/yolov5/.dockerignore ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
2
+ .git
3
+ .cache
4
+ .idea
5
+ runs
6
+ output
7
+ coco
8
+ storage.googleapis.com
9
+
10
+ data/samples/*
11
+ **/results*.csv
12
+ *.jpg
13
+
14
+ # Neural Network weights -----------------------------------------------------------------------------------------------
15
+ **/*.pt
16
+ **/*.pth
17
+ **/*.onnx
18
+ **/*.engine
19
+ **/*.mlmodel
20
+ **/*.torchscript
21
+ **/*.torchscript.pt
22
+ **/*.tflite
23
+ **/*.h5
24
+ **/*.pb
25
+ *_saved_model/
26
+ *_web_model/
27
+ *_openvino_model/
28
+
29
+ # Below Copied From .gitignore -----------------------------------------------------------------------------------------
30
+ # Below Copied From .gitignore -----------------------------------------------------------------------------------------
31
+
32
+
33
+ # GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
34
+ # Byte-compiled / optimized / DLL files
35
+ __pycache__/
36
+ *.py[cod]
37
+ *$py.class
38
+
39
+ # C extensions
40
+ *.so
41
+
42
+ # Distribution / packaging
43
+ .Python
44
+ env/
45
+ build/
46
+ develop-eggs/
47
+ dist/
48
+ downloads/
49
+ eggs/
50
+ .eggs/
51
+ lib/
52
+ lib64/
53
+ parts/
54
+ sdist/
55
+ var/
56
+ wheels/
57
+ *.egg-info/
58
+ wandb/
59
+ .installed.cfg
60
+ *.egg
61
+
62
+ # PyInstaller
63
+ # Usually these files are written by a python script from a template
64
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
65
+ *.manifest
66
+ *.spec
67
+
68
+ # Installer logs
69
+ pip-log.txt
70
+ pip-delete-this-directory.txt
71
+
72
+ # Unit test / coverage reports
73
+ htmlcov/
74
+ .tox/
75
+ .coverage
76
+ .coverage.*
77
+ .cache
78
+ nosetests.xml
79
+ coverage.xml
80
+ *.cover
81
+ .hypothesis/
82
+
83
+ # Translations
84
+ *.mo
85
+ *.pot
86
+
87
+ # Django stuff:
88
+ *.log
89
+ local_settings.py
90
+
91
+ # Flask stuff:
92
+ instance/
93
+ .webassets-cache
94
+
95
+ # Scrapy stuff:
96
+ .scrapy
97
+
98
+ # Sphinx documentation
99
+ docs/_build/
100
+
101
+ # PyBuilder
102
+ target/
103
+
104
+ # Jupyter Notebook
105
+ .ipynb_checkpoints
106
+
107
+ # pyenv
108
+ .python-version
109
+
110
+ # celery beat schedule file
111
+ celerybeat-schedule
112
+
113
+ # SageMath parsed files
114
+ *.sage.py
115
+
116
+ # dotenv
117
+ .env
118
+
119
+ # virtualenv
120
+ .venv*
121
+ venv*/
122
+ ENV*/
123
+
124
+ # Spyder project settings
125
+ .spyderproject
126
+ .spyproject
127
+
128
+ # Rope project settings
129
+ .ropeproject
130
+
131
+ # mkdocs documentation
132
+ /site
133
+
134
+ # mypy
135
+ .mypy_cache/
136
+
137
+
138
+ # https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
139
+
140
+ # General
141
+ .DS_Store
142
+ .AppleDouble
143
+ .LSOverride
144
+
145
+ # Icon must end with two \r
146
+ Icon
147
+ Icon?
148
+
149
+ # Thumbnails
150
+ ._*
151
+
152
+ # Files that might appear in the root of a volume
153
+ .DocumentRevisions-V100
154
+ .fseventsd
155
+ .Spotlight-V100
156
+ .TemporaryItems
157
+ .Trashes
158
+ .VolumeIcon.icns
159
+ .com.apple.timemachine.donotpresent
160
+
161
+ # Directories potentially created on remote AFP share
162
+ .AppleDB
163
+ .AppleDesktop
164
+ Network Trash Folder
165
+ Temporary Items
166
+ .apdisk
167
+
168
+
169
+ # https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
170
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
171
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
172
+
173
+ # User-specific stuff:
174
+ .idea/*
175
+ .idea/**/workspace.xml
176
+ .idea/**/tasks.xml
177
+ .idea/dictionaries
178
+ .html # Bokeh Plots
179
+ .pg # TensorFlow Frozen Graphs
180
+ .avi # videos
181
+
182
+ # Sensitive or high-churn files:
183
+ .idea/**/dataSources/
184
+ .idea/**/dataSources.ids
185
+ .idea/**/dataSources.local.xml
186
+ .idea/**/sqlDataSources.xml
187
+ .idea/**/dynamic.xml
188
+ .idea/**/uiDesigner.xml
189
+
190
+ # Gradle:
191
+ .idea/**/gradle.xml
192
+ .idea/**/libraries
193
+
194
+ # CMake
195
+ cmake-build-debug/
196
+ cmake-build-release/
197
+
198
+ # Mongo Explorer plugin:
199
+ .idea/**/mongoSettings.xml
200
+
201
+ ## File-based project format:
202
+ *.iws
203
+
204
+ ## Plugin-specific files:
205
+
206
+ # IntelliJ
207
+ out/
208
+
209
+ # mpeltonen/sbt-idea plugin
210
+ .idea_modules/
211
+
212
+ # JIRA plugin
213
+ atlassian-ide-plugin.xml
214
+
215
+ # Cursive Clojure plugin
216
+ .idea/replstate.xml
217
+
218
+ # Crashlytics plugin (for Android Studio and IntelliJ)
219
+ com_crashlytics_export_strings.xml
220
+ crashlytics.properties
221
+ crashlytics-build.properties
222
+ fabric.properties
models/yolov5/.gitattributes ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # this drop notebooks from GitHub language stats
2
+ *.ipynb linguist-vendored
models/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: 🐛 Bug Report
2
+ # title: " "
3
+ description: Problems with YOLOv5
4
+ labels: [bug, triage]
5
+ body:
6
+ - type: markdown
7
+ attributes:
8
+ value: |
9
+ Thank you for submitting a YOLOv5 🐛 Bug Report!
10
+
11
+ - type: checkboxes
12
+ attributes:
13
+ label: Search before asking
14
+ description: >
15
+ Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists.
16
+ options:
17
+ - label: >
18
+ I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report.
19
+ required: true
20
+
21
+ - type: dropdown
22
+ attributes:
23
+ label: YOLOv5 Component
24
+ description: |
25
+ Please select the part of YOLOv5 where you found the bug.
26
+ multiple: true
27
+ options:
28
+ - "Training"
29
+ - "Validation"
30
+ - "Detection"
31
+ - "Export"
32
+ - "PyTorch Hub"
33
+ - "Multi-GPU"
34
+ - "Evolution"
35
+ - "Integrations"
36
+ - "Other"
37
+ validations:
38
+ required: false
39
+
40
+ - type: textarea
41
+ attributes:
42
+ label: Bug
43
+ description: Provide console output with error messages and/or screenshots of the bug.
44
+ placeholder: |
45
+ 💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
46
+ validations:
47
+ required: true
48
+
49
+ - type: textarea
50
+ attributes:
51
+ label: Environment
52
+ description: Please specify the software and hardware you used to produce the bug.
53
+ placeholder: |
54
+ - YOLO: YOLOv5 🚀 v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)
55
+ - OS: Ubuntu 20.04
56
+ - Python: 3.9.0
57
+ validations:
58
+ required: false
59
+
60
+ - type: textarea
61
+ attributes:
62
+ label: Minimal Reproducible Example
63
+ description: >
64
+ When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem.
65
+ This is referred to by community members as creating a [minimal reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/).
66
+ placeholder: |
67
+ ```
68
+ # Code to reproduce your issue here
69
+ ```
70
+ validations:
71
+ required: false
72
+
73
+ - type: textarea
74
+ attributes:
75
+ label: Additional
76
+ description: Anything else you would like to share?
77
+
78
+ - type: checkboxes
79
+ attributes:
80
+ label: Are you willing to submit a PR?
81
+ description: >
82
+ (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
83
+ See the YOLOv5 [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started.
84
+ options:
85
+ - label: Yes I'd like to help by submitting a PR!
models/yolov5/.github/ISSUE_TEMPLATE/config.yml ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ blank_issues_enabled: true
2
+ contact_links:
3
+ - name: 📄 Docs
4
+ url: https://docs.ultralytics.com/yolov5
5
+ about: View Ultralytics YOLOv5 Docs
6
+ - name: 💬 Forum
7
+ url: https://community.ultralytics.com/
8
+ about: Ask on Ultralytics Community Forum
9
+ - name: 🎧 Discord
10
+ url: https://ultralytics.com/discord
11
+ about: Ask on Ultralytics Discord
models/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: 🚀 Feature Request
2
+ description: Suggest a YOLOv5 idea
3
+ # title: " "
4
+ labels: [enhancement]
5
+ body:
6
+ - type: markdown
7
+ attributes:
8
+ value: |
9
+ Thank you for submitting a YOLOv5 🚀 Feature Request!
10
+
11
+ - type: checkboxes
12
+ attributes:
13
+ label: Search before asking
14
+ description: >
15
+ Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists.
16
+ options:
17
+ - label: >
18
+ I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests.
19
+ required: true
20
+
21
+ - type: textarea
22
+ attributes:
23
+ label: Description
24
+ description: A short description of your feature.
25
+ placeholder: |
26
+ What new feature would you like to see in YOLOv5?
27
+ validations:
28
+ required: true
29
+
30
+ - type: textarea
31
+ attributes:
32
+ label: Use case
33
+ description: |
34
+ Describe the use case of your feature request. It will help us understand and prioritize the feature request.
35
+ placeholder: |
36
+ How would this feature be used, and who would use it?
37
+
38
+ - type: textarea
39
+ attributes:
40
+ label: Additional
41
+ description: Anything else you would like to share?
42
+
43
+ - type: checkboxes
44
+ attributes:
45
+ label: Are you willing to submit a PR?
46
+ description: >
47
+ (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
48
+ See the YOLOv5 [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started.
49
+ options:
50
+ - label: Yes I'd like to help by submitting a PR!
models/yolov5/.github/ISSUE_TEMPLATE/question.yml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: ❓ Question
2
+ description: Ask a YOLOv5 question
3
+ # title: " "
4
+ labels: [question]
5
+ body:
6
+ - type: markdown
7
+ attributes:
8
+ value: |
9
+ Thank you for asking a YOLOv5 ❓ Question!
10
+
11
+ - type: checkboxes
12
+ attributes:
13
+ label: Search before asking
14
+ description: >
15
+ Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists.
16
+ options:
17
+ - label: >
18
+ I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions.
19
+ required: true
20
+
21
+ - type: textarea
22
+ attributes:
23
+ label: Question
24
+ description: What is your question?
25
+ placeholder: |
26
+ 💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
27
+ validations:
28
+ required: true
29
+
30
+ - type: textarea
31
+ attributes:
32
+ label: Additional
33
+ description: Anything else you would like to share?
models/yolov5/.github/dependabot.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Dependabot for package version updates
3
+ # https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
4
+
5
+ version: 2
6
+ updates:
7
+ - package-ecosystem: pip
8
+ directory: "/"
9
+ schedule:
10
+ interval: weekly
11
+ time: "04:00"
12
+ open-pull-requests-limit: 10
13
+ reviewers:
14
+ - glenn-jocher
15
+ labels:
16
+ - dependencies
17
+
18
+ - package-ecosystem: github-actions
19
+ directory: "/.github/workflows"
20
+ schedule:
21
+ interval: weekly
22
+ time: "04:00"
23
+ open-pull-requests-limit: 5
24
+ reviewers:
25
+ - glenn-jocher
26
+ labels:
27
+ - dependencies
models/yolov5/.github/workflows/ci-testing.yml ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # YOLOv5 Continuous Integration (CI) GitHub Actions tests
3
+
4
+ name: YOLOv5 CI
5
+
6
+ on:
7
+ push:
8
+ branches: [master]
9
+ pull_request:
10
+ branches: [master]
11
+ schedule:
12
+ - cron: "0 0 * * *" # runs at 00:00 UTC every day
13
+
14
+ jobs:
15
+ Benchmarks:
16
+ runs-on: ${{ matrix.os }}
17
+ strategy:
18
+ fail-fast: false
19
+ matrix:
20
+ os: [ubuntu-latest]
21
+ python-version: ["3.11"] # requires python<=3.10
22
+ model: [yolov5n]
23
+ steps:
24
+ - uses: actions/checkout@v4
25
+ - uses: actions/setup-python@v5
26
+ with:
27
+ python-version: ${{ matrix.python-version }}
28
+ cache: "pip" # caching pip dependencies
29
+ - name: Install requirements
30
+ run: |
31
+ python -m pip install --upgrade pip wheel
32
+ pip install -r requirements.txt coremltools openvino-dev tensorflow-cpu --extra-index-url https://download.pytorch.org/whl/cpu
33
+ yolo checks
34
+ pip list
35
+ - name: Benchmark DetectionModel
36
+ run: |
37
+ python benchmarks.py --data coco128.yaml --weights ${{ matrix.model }}.pt --img 320 --hard-fail 0.29
38
+ - name: Benchmark SegmentationModel
39
+ run: |
40
+ python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22
41
+ - name: Test predictions
42
+ run: |
43
+ python export.py --weights ${{ matrix.model }}-cls.pt --include onnx --img 224
44
+ python detect.py --weights ${{ matrix.model }}.onnx --img 320
45
+ python segment/predict.py --weights ${{ matrix.model }}-seg.onnx --img 320
46
+ python classify/predict.py --weights ${{ matrix.model }}-cls.onnx --img 224
47
+
48
+ Tests:
49
+ timeout-minutes: 60
50
+ runs-on: ${{ matrix.os }}
51
+ strategy:
52
+ fail-fast: false
53
+ matrix:
54
+ os: [ubuntu-latest, windows-latest] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049
55
+ python-version: ["3.11"]
56
+ model: [yolov5n]
57
+ include:
58
+ - os: ubuntu-latest
59
+ python-version: "3.8" # '3.6.8' min
60
+ model: yolov5n
61
+ - os: ubuntu-latest
62
+ python-version: "3.9"
63
+ model: yolov5n
64
+ - os: ubuntu-latest
65
+ python-version: "3.8" # torch 1.8.0 requires python >=3.6, <=3.8
66
+ model: yolov5n
67
+ torch: "1.8.0" # min torch version CI https://pypi.org/project/torchvision/
68
+ steps:
69
+ - uses: actions/checkout@v4
70
+ - uses: actions/setup-python@v5
71
+ with:
72
+ python-version: ${{ matrix.python-version }}
73
+ cache: "pip" # caching pip dependencies
74
+ - name: Install requirements
75
+ run: |
76
+ python -m pip install --upgrade pip wheel
77
+ if [ "${{ matrix.torch }}" == "1.8.0" ]; then
78
+ pip install -r requirements.txt torch==1.8.0 torchvision==0.9.0 --extra-index-url https://download.pytorch.org/whl/cpu
79
+ else
80
+ pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu
81
+ fi
82
+ shell: bash # for Windows compatibility
83
+ - name: Check environment
84
+ run: |
85
+ yolo checks
86
+ pip list
87
+ - name: Test detection
88
+ shell: bash # for Windows compatibility
89
+ run: |
90
+ # export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories
91
+ m=${{ matrix.model }} # official weights
92
+ b=runs/train/exp/weights/best # best.pt checkpoint
93
+ python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
94
+ for d in cpu; do # devices
95
+ for w in $m $b; do # weights
96
+ python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
97
+ python detect.py --imgsz 64 --weights $w.pt --device $d # detect
98
+ done
99
+ done
100
+ python hubconf.py --model $m # hub
101
+ # python models/tf.py --weights $m.pt # build TF model
102
+ python models/yolo.py --cfg $m.yaml # build PyTorch model
103
+ python export.py --weights $m.pt --img 64 --include torchscript # export
104
+ python - <<EOF
105
+ import torch
106
+ im = torch.zeros([1, 3, 64, 64])
107
+ for path in '$m', '$b':
108
+ model = torch.hub.load('.', 'custom', path=path, source='local')
109
+ print(model('data/images/bus.jpg'))
110
+ model(im) # warmup, build grids for trace
111
+ torch.jit.trace(model, [im])
112
+ EOF
113
+ - name: Test segmentation
114
+ shell: bash # for Windows compatibility
115
+ run: |
116
+ m=${{ matrix.model }}-seg # official weights
117
+ b=runs/train-seg/exp/weights/best # best.pt checkpoint
118
+ python segment/train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
119
+ python segment/train.py --imgsz 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device cpu # train
120
+ for d in cpu; do # devices
121
+ for w in $m $b; do # weights
122
+ python segment/val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
123
+ python segment/predict.py --imgsz 64 --weights $w.pt --device $d # predict
124
+ python export.py --weights $w.pt --img 64 --include torchscript --device $d # export
125
+ done
126
+ done
127
+ - name: Test classification
128
+ shell: bash # for Windows compatibility
129
+ run: |
130
+ m=${{ matrix.model }}-cls.pt # official weights
131
+ b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint
132
+ python classify/train.py --imgsz 32 --model $m --data mnist160 --epochs 1 # train
133
+ python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist160 # val
134
+ python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist160/test/7/60.png # predict
135
+ python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict
136
+ python export.py --weights $b --img 64 --include torchscript # export
137
+ python - <<EOF
138
+ import torch
139
+ for path in '$m', '$b':
140
+ model = torch.hub.load('.', 'custom', path=path, source='local')
141
+ EOF
142
+
143
+ Summary:
144
+ runs-on: ubuntu-latest
145
+ needs: [Benchmarks, Tests] # Add job names that you want to check for failure
146
+ if: always() # This ensures the job runs even if previous jobs fail
147
+ steps:
148
+ - name: Check for failure and notify
149
+ if: (needs.Benchmarks.result == 'failure' || needs.Tests.result == 'failure' || needs.Benchmarks.result == 'cancelled' || needs.Tests.result == 'cancelled') && github.repository == 'ultralytics/yolov5' && (github.event_name == 'schedule' || github.event_name == 'push')
150
+ uses: slackapi/slack-github-action@v1.25.0
151
+ with:
152
+ payload: |
153
+ {"text": "<!channel> GitHub Actions error for ${{ github.workflow }} ❌\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* ${{ github.event_name }}\n"}
154
+ env:
155
+ SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }}
models/yolov5/.github/workflows/codeql-analysis.yml ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This action runs GitHub's industry-leading static analysis engine, CodeQL, against a repository's source code to find security vulnerabilities.
2
+ # https://github.com/github/codeql-action
3
+
4
+ name: "CodeQL"
5
+
6
+ on:
7
+ schedule:
8
+ - cron: "0 0 1 * *" # Runs at 00:00 UTC on the 1st of every month
9
+ workflow_dispatch:
10
+
11
+ jobs:
12
+ analyze:
13
+ name: Analyze
14
+ runs-on: ubuntu-latest
15
+
16
+ strategy:
17
+ fail-fast: false
18
+ matrix:
19
+ language: ["python"]
20
+ # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
21
+ # Learn more:
22
+ # https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
23
+
24
+ steps:
25
+ - name: Checkout repository
26
+ uses: actions/checkout@v4
27
+
28
+ # Initializes the CodeQL tools for scanning.
29
+ - name: Initialize CodeQL
30
+ uses: github/codeql-action/init@v3
31
+ with:
32
+ languages: ${{ matrix.language }}
33
+ # If you wish to specify custom queries, you can do so here or in a config file.
34
+ # By default, queries listed here will override any specified in a config file.
35
+ # Prefix the list here with "+" to use these queries and those in the config file.
36
+ # queries: ./path/to/local/query, your-org/your-repo/queries@main
37
+
38
+ # Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
39
+ # If this step fails, then you should remove it and run the build manually (see below)
40
+ - name: Autobuild
41
+ uses: github/codeql-action/autobuild@v3
42
+
43
+ # ℹ️ Command-line programs to run using the OS shell.
44
+ # 📚 https://git.io/JvXDl
45
+
46
+ # ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
47
+ # and modify them (or add more) to build your code if your project
48
+ # uses a compiled language
49
+
50
+ #- run: |
51
+ # make bootstrap
52
+ # make release
53
+
54
+ - name: Perform CodeQL Analysis
55
+ uses: github/codeql-action/analyze@v3
models/yolov5/.github/workflows/docker.yml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # Builds ultralytics/yolov5:latest images on DockerHub https://hub.docker.com/r/ultralytics/yolov5
3
+
4
+ name: Publish Docker Images
5
+
6
+ on:
7
+ push:
8
+ branches: [master]
9
+ workflow_dispatch:
10
+
11
+ jobs:
12
+ docker:
13
+ if: github.repository == 'ultralytics/yolov5'
14
+ name: Push Docker image to Docker Hub
15
+ runs-on: ubuntu-latest
16
+ steps:
17
+ - name: Checkout repo
18
+ uses: actions/checkout@v4
19
+ with:
20
+ fetch-depth: 0 # copy full .git directory to access full git history in Docker images
21
+
22
+ - name: Set up QEMU
23
+ uses: docker/setup-qemu-action@v3
24
+
25
+ - name: Set up Docker Buildx
26
+ uses: docker/setup-buildx-action@v3
27
+
28
+ - name: Login to Docker Hub
29
+ uses: docker/login-action@v3
30
+ with:
31
+ username: ${{ secrets.DOCKERHUB_USERNAME }}
32
+ password: ${{ secrets.DOCKERHUB_TOKEN }}
33
+
34
+ - name: Build and push arm64 image
35
+ uses: docker/build-push-action@v5
36
+ continue-on-error: true
37
+ with:
38
+ context: .
39
+ platforms: linux/arm64
40
+ file: utils/docker/Dockerfile-arm64
41
+ push: true
42
+ tags: ultralytics/yolov5:latest-arm64
43
+
44
+ - name: Build and push CPU image
45
+ uses: docker/build-push-action@v5
46
+ continue-on-error: true
47
+ with:
48
+ context: .
49
+ file: utils/docker/Dockerfile-cpu
50
+ push: true
51
+ tags: ultralytics/yolov5:latest-cpu
52
+
53
+ - name: Build and push GPU image
54
+ uses: docker/build-push-action@v5
55
+ continue-on-error: true
56
+ with:
57
+ context: .
58
+ file: utils/docker/Dockerfile
59
+ push: true
60
+ tags: ultralytics/yolov5:latest
models/yolov5/.github/workflows/format.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics 🚀 - AGPL-3.0 license
2
+ # Ultralytics Actions https://github.com/ultralytics/actions
3
+ # This workflow automatically formats code and documentation in PRs to official Ultralytics standards
4
+
5
+ name: Ultralytics Actions
6
+
7
+ on:
8
+ push:
9
+ branches: [main, master]
10
+ pull_request_target:
11
+ branches: [main, master]
12
+
13
+ jobs:
14
+ format:
15
+ runs-on: ubuntu-latest
16
+ steps:
17
+ - name: Run Ultralytics Formatting
18
+ uses: ultralytics/actions@main
19
+ with:
20
+ token: ${{ secrets.GITHUB_TOKEN }} # automatically generated, do not modify
21
+ python: true # format Python code and docstrings
22
+ markdown: true # format Markdown and YAML
23
+ spelling: true # check spelling
24
+ links: false # check broken links
25
+ summary: true # print PR summary with GPT4 (requires 'openai_api_key' or 'openai_azure_api_key' and 'openai_azure_endpoint')
26
+ openai_azure_api_key: ${{ secrets.OPENAI_AZURE_API_KEY }}
27
+ openai_azure_endpoint: ${{ secrets.OPENAI_AZURE_ENDPOINT }}
models/yolov5/.github/workflows/greetings.yml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+
3
+ name: Greetings
4
+
5
+ on:
6
+ pull_request_target:
7
+ types: [opened]
8
+ issues:
9
+ types: [opened]
10
+
11
+ jobs:
12
+ greeting:
13
+ runs-on: ubuntu-latest
14
+ steps:
15
+ - uses: actions/first-interaction@v1
16
+ with:
17
+ repo-token: ${{ secrets.GITHUB_TOKEN }}
18
+ pr-message: |
19
+ 👋 Hello @${{ github.actor }}, thank you for submitting a YOLOv5 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
20
+
21
+ - ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
22
+ - ✅ Verify all YOLOv5 Continuous Integration (CI) **checks are passing**.
23
+ - ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
24
+
25
+ issue-message: |
26
+ 👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ [Tutorials](https://docs.ultralytics.com/yolov5/) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/) all the way to advanced concepts like [Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/).
27
+
28
+ If this is a 🐛 Bug Report, please provide a **minimum reproducible example** to help us debug it.
29
+
30
+ If this is a custom training ❓ Question, please provide as much information as possible, including dataset image examples and training logs, and verify you are following our [Tips for Best Training Results](https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results/).
31
+
32
+ ## Requirements
33
+
34
+ [**Python>=3.8.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/). To get started:
35
+ ```bash
36
+ git clone https://github.com/ultralytics/yolov5 # clone
37
+ cd yolov5
38
+ pip install -r requirements.txt # install
39
+ ```
40
+
41
+ ## Environments
42
+
43
+ YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
44
+
45
+ - **Notebooks** with free GPU: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
46
+ - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)
47
+ - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)
48
+ - **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
49
+
50
+ ## Status
51
+
52
+ <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
53
+
54
+ If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
55
+
56
+ ## Introducing YOLOv8 🚀
57
+
58
+ We're excited to announce the launch of our latest state-of-the-art (SOTA) object detection model for 2023 - [YOLOv8](https://github.com/ultralytics/ultralytics) 🚀!
59
+
60
+ Designed to be fast, accurate, and easy to use, YOLOv8 is an ideal choice for a wide range of object detection, image segmentation and image classification tasks. With YOLOv8, you'll be able to quickly and accurately detect objects in real-time, streamline your workflows, and achieve new levels of accuracy in your projects.
61
+
62
+ Check out our [YOLOv8 Docs](https://docs.ultralytics.com/) for details and get started with:
63
+ ```bash
64
+ pip install ultralytics
65
+ ```
models/yolov5/.github/workflows/links.yml ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Continuous Integration (CI) GitHub Actions tests broken link checker using https://github.com/lycheeverse/lychee
3
+ # Ignores the following status codes to reduce false positives:
4
+ # - 403(OpenVINO, 'forbidden')
5
+ # - 429(Instagram, 'too many requests')
6
+ # - 500(Zenodo, 'cached')
7
+ # - 502(Zenodo, 'bad gateway')
8
+ # - 999(LinkedIn, 'unknown status code')
9
+
10
+ name: Check Broken links
11
+
12
+ on:
13
+ workflow_dispatch:
14
+ schedule:
15
+ - cron: "0 0 * * *" # runs at 00:00 UTC every day
16
+
17
+ jobs:
18
+ Links:
19
+ runs-on: ubuntu-latest
20
+ steps:
21
+ - uses: actions/checkout@v4
22
+
23
+ - name: Download and install lychee
24
+ run: |
25
+ LYCHEE_URL=$(curl -s https://api.github.com/repos/lycheeverse/lychee/releases/latest | grep "browser_download_url" | grep "x86_64-unknown-linux-gnu.tar.gz" | cut -d '"' -f 4)
26
+ curl -L $LYCHEE_URL -o lychee.tar.gz
27
+ tar xzf lychee.tar.gz
28
+ sudo mv lychee /usr/local/bin
29
+
30
+ - name: Test Markdown and HTML links with retry
31
+ uses: nick-invision/retry@v3
32
+ with:
33
+ timeout_minutes: 5
34
+ retry_wait_seconds: 60
35
+ max_attempts: 3
36
+ command: |
37
+ lychee \
38
+ --scheme 'https' \
39
+ --timeout 60 \
40
+ --insecure \
41
+ --accept 403,429,500,502,999 \
42
+ --exclude-all-private \
43
+ --exclude 'https?://(www\.)?(linkedin\.com|twitter\.com|instagram\.com|kaggle\.com|fonts\.gstatic\.com|url\.com)' \
44
+ --exclude-path '**/ci.yaml' \
45
+ --github-token ${{ secrets.GITHUB_TOKEN }} \
46
+ './**/*.md' \
47
+ './**/*.html'
48
+
49
+ - name: Test Markdown, HTML, YAML, Python and Notebook links with retry
50
+ if: github.event_name == 'workflow_dispatch'
51
+ uses: nick-invision/retry@v3
52
+ with:
53
+ timeout_minutes: 5
54
+ retry_wait_seconds: 60
55
+ max_attempts: 3
56
+ command: |
57
+ lychee \
58
+ --scheme 'https' \
59
+ --timeout 60 \
60
+ --insecure \
61
+ --accept 429,999 \
62
+ --exclude-all-private \
63
+ --exclude 'https?://(www\.)?(linkedin\.com|twitter\.com|instagram\.com|kaggle\.com|fonts\.gstatic\.com|url\.com)' \
64
+ --exclude-path '**/ci.yaml' \
65
+ --github-token ${{ secrets.GITHUB_TOKEN }} \
66
+ './**/*.md' \
67
+ './**/*.html' \
68
+ './**/*.yml' \
69
+ './**/*.yaml' \
70
+ './**/*.py' \
71
+ './**/*.ipynb'
models/yolov5/.github/workflows/stale.yml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+
3
+ name: Close stale issues
4
+ on:
5
+ schedule:
6
+ - cron: "0 0 * * *" # Runs at 00:00 UTC every day
7
+
8
+ jobs:
9
+ stale:
10
+ runs-on: ubuntu-latest
11
+ steps:
12
+ - uses: actions/stale@v9
13
+ with:
14
+ repo-token: ${{ secrets.GITHUB_TOKEN }}
15
+
16
+ stale-issue-message: |
17
+ 👋 Hello there! We wanted to give you a friendly reminder that this issue has not had any recent activity and may be closed soon, but don't worry - you can always reopen it if needed. If you still have any questions or concerns, please feel free to let us know how we can help.
18
+
19
+ For additional resources and information, please see the links below:
20
+
21
+ - **Docs**: https://docs.ultralytics.com
22
+ - **HUB**: https://hub.ultralytics.com
23
+ - **Community**: https://community.ultralytics.com
24
+
25
+ Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed!
26
+
27
+ Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
28
+
29
+ stale-pr-message: |
30
+ 👋 Hello there! We wanted to let you know that we've decided to close this pull request due to inactivity. We appreciate the effort you put into contributing to our project, but unfortunately, not all contributions are suitable or aligned with our product roadmap.
31
+
32
+ We hope you understand our decision, and please don't let it discourage you from contributing to open source projects in the future. We value all of our community members and their contributions, and we encourage you to keep exploring new projects and ways to get involved.
33
+
34
+ For additional resources and information, please see the links below:
35
+
36
+ - **Docs**: https://docs.ultralytics.com
37
+ - **HUB**: https://hub.ultralytics.com
38
+ - **Community**: https://community.ultralytics.com
39
+
40
+ Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
41
+
42
+ days-before-issue-stale: 30
43
+ days-before-issue-close: 10
44
+ days-before-pr-stale: 90
45
+ days-before-pr-close: 30
46
+ exempt-issue-labels: "documentation,tutorial,TODO"
47
+ operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting.
models/yolov5/.gitignore ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
2
+ *.jpg
3
+ *.jpeg
4
+ *.png
5
+ *.bmp
6
+ *.tif
7
+ *.tiff
8
+ *.heic
9
+ *.JPG
10
+ *.JPEG
11
+ *.PNG
12
+ *.BMP
13
+ *.TIF
14
+ *.TIFF
15
+ *.HEIC
16
+ *.mp4
17
+ *.mov
18
+ *.MOV
19
+ *.avi
20
+ *.data
21
+ *.json
22
+ *.cfg
23
+ !setup.cfg
24
+ !cfg/yolov3*.cfg
25
+
26
+ storage.googleapis.com
27
+ runs/*
28
+ data/*
29
+ data/images/*
30
+ !data/*.yaml
31
+ !data/hyps
32
+ !data/scripts
33
+ !data/images
34
+ !data/images/zidane.jpg
35
+ !data/images/bus.jpg
36
+ !data/*.sh
37
+
38
+ results*.csv
39
+
40
+ # Datasets -------------------------------------------------------------------------------------------------------------
41
+ coco/
42
+ coco128/
43
+ VOC/
44
+
45
+ # MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
46
+ *.m~
47
+ *.mat
48
+ !targets*.mat
49
+
50
+ # Neural Network weights -----------------------------------------------------------------------------------------------
51
+ *.weights
52
+ *.pt
53
+ *.pb
54
+ *.onnx
55
+ *.engine
56
+ *.mlmodel
57
+ *.torchscript
58
+ *.tflite
59
+ *.h5
60
+ *_saved_model/
61
+ *_web_model/
62
+ *_openvino_model/
63
+ *_paddle_model/
64
+ darknet53.conv.74
65
+ yolov3-tiny.conv.15
66
+
67
+ # GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
68
+ # Byte-compiled / optimized / DLL files
69
+ __pycache__/
70
+ *.py[cod]
71
+ *$py.class
72
+
73
+ # C extensions
74
+ *.so
75
+
76
+ # Distribution / packaging
77
+ .Python
78
+ env/
79
+ build/
80
+ develop-eggs/
81
+ dist/
82
+ downloads/
83
+ eggs/
84
+ .eggs/
85
+ lib/
86
+ lib64/
87
+ parts/
88
+ sdist/
89
+ var/
90
+ wheels/
91
+ *.egg-info/
92
+ /wandb/
93
+ .installed.cfg
94
+ *.egg
95
+
96
+
97
+ # PyInstaller
98
+ # Usually these files are written by a python script from a template
99
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
100
+ *.manifest
101
+ *.spec
102
+
103
+ # Installer logs
104
+ pip-log.txt
105
+ pip-delete-this-directory.txt
106
+
107
+ # Unit test / coverage reports
108
+ htmlcov/
109
+ .tox/
110
+ .coverage
111
+ .coverage.*
112
+ .cache
113
+ nosetests.xml
114
+ coverage.xml
115
+ *.cover
116
+ .hypothesis/
117
+
118
+ # Translations
119
+ *.mo
120
+ *.pot
121
+
122
+ # Django stuff:
123
+ *.log
124
+ local_settings.py
125
+
126
+ # Flask stuff:
127
+ instance/
128
+ .webassets-cache
129
+
130
+ # Scrapy stuff:
131
+ .scrapy
132
+
133
+ # Sphinx documentation
134
+ docs/_build/
135
+
136
+ # PyBuilder
137
+ target/
138
+
139
+ # Jupyter Notebook
140
+ .ipynb_checkpoints
141
+
142
+ # pyenv
143
+ .python-version
144
+
145
+ # celery beat schedule file
146
+ celerybeat-schedule
147
+
148
+ # SageMath parsed files
149
+ *.sage.py
150
+
151
+ # dotenv
152
+ .env
153
+
154
+ # virtualenv
155
+ .venv*
156
+ venv*/
157
+ ENV*/
158
+
159
+ # Spyder project settings
160
+ .spyderproject
161
+ .spyproject
162
+
163
+ # Rope project settings
164
+ .ropeproject
165
+
166
+ # mkdocs documentation
167
+ /site
168
+
169
+ # mypy
170
+ .mypy_cache/
171
+
172
+
173
+ # https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
174
+
175
+ # General
176
+ .DS_Store
177
+ .AppleDouble
178
+ .LSOverride
179
+
180
+ # Icon must end with two \r
181
+ Icon
182
+ Icon?
183
+
184
+ # Thumbnails
185
+ ._*
186
+
187
+ # Files that might appear in the root of a volume
188
+ .DocumentRevisions-V100
189
+ .fseventsd
190
+ .Spotlight-V100
191
+ .TemporaryItems
192
+ .Trashes
193
+ .VolumeIcon.icns
194
+ .com.apple.timemachine.donotpresent
195
+
196
+ # Directories potentially created on remote AFP share
197
+ .AppleDB
198
+ .AppleDesktop
199
+ Network Trash Folder
200
+ Temporary Items
201
+ .apdisk
202
+
203
+
204
+ # https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
205
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
206
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
207
+
208
+ # User-specific stuff:
209
+ .idea/*
210
+ .idea/**/workspace.xml
211
+ .idea/**/tasks.xml
212
+ .idea/dictionaries
213
+ .html # Bokeh Plots
214
+ .pg # TensorFlow Frozen Graphs
215
+ .avi # videos
216
+
217
+ # Sensitive or high-churn files:
218
+ .idea/**/dataSources/
219
+ .idea/**/dataSources.ids
220
+ .idea/**/dataSources.local.xml
221
+ .idea/**/sqlDataSources.xml
222
+ .idea/**/dynamic.xml
223
+ .idea/**/uiDesigner.xml
224
+
225
+ # Gradle:
226
+ .idea/**/gradle.xml
227
+ .idea/**/libraries
228
+
229
+ # CMake
230
+ cmake-build-debug/
231
+ cmake-build-release/
232
+
233
+ # Mongo Explorer plugin:
234
+ .idea/**/mongoSettings.xml
235
+
236
+ ## File-based project format:
237
+ *.iws
238
+
239
+ ## Plugin-specific files:
240
+
241
+ # IntelliJ
242
+ out/
243
+
244
+ # mpeltonen/sbt-idea plugin
245
+ .idea_modules/
246
+
247
+ # JIRA plugin
248
+ atlassian-ide-plugin.xml
249
+
250
+ # Cursive Clojure plugin
251
+ .idea/replstate.xml
252
+
253
+ # Crashlytics plugin (for Android Studio and IntelliJ)
254
+ com_crashlytics_export_strings.xml
255
+ crashlytics.properties
256
+ crashlytics-build.properties
257
+ fabric.properties
models/yolov5/CITATION.cff ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cff-version: 1.2.0
2
+ preferred-citation:
3
+ type: software
4
+ message: If you use YOLOv5, please cite it as below.
5
+ authors:
6
+ - family-names: Jocher
7
+ given-names: Glenn
8
+ orcid: "https://orcid.org/0000-0001-5950-6979"
9
+ title: "YOLOv5 by Ultralytics"
10
+ version: 7.0
11
+ doi: 10.5281/zenodo.3908559
12
+ date-released: 2020-5-29
13
+ license: AGPL-3.0
14
+ url: "https://github.com/ultralytics/yolov5"
models/yolov5/CONTRIBUTING.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Contributing to YOLOv5 🚀
2
+
3
+ We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
4
+
5
+ - Reporting a bug
6
+ - Discussing the current state of the code
7
+ - Submitting a fix
8
+ - Proposing a new feature
9
+ - Becoming a maintainer
10
+
11
+ YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be helping push the frontiers of what's possible in AI 😃!
12
+
13
+ ## Submitting a Pull Request (PR) 🛠️
14
+
15
+ Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
16
+
17
+ ### 1. Select File to Update
18
+
19
+ Select `requirements.txt` to update by clicking on it in GitHub.
20
+
21
+ <p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
22
+
23
+ ### 2. Click 'Edit this file'
24
+
25
+ The button is in the top-right corner.
26
+
27
+ <p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
28
+
29
+ ### 3. Make Changes
30
+
31
+ Change the `matplotlib` version from `3.2.2` to `3.3`.
32
+
33
+ <p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
34
+
35
+ ### 4. Preview Changes and Submit PR
36
+
37
+ Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch** for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
38
+
39
+ <p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
40
+
41
+ ### PR recommendations
42
+
43
+ To allow your work to be integrated as seamlessly as possible, we advise you to:
44
+
45
+ - ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
46
+
47
+ <p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 15" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
48
+
49
+ - ✅ Verify all YOLOv5 Continuous Integration (CI) **checks are passing**.
50
+
51
+ <p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 03" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
52
+
53
+ - ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
54
+
55
+ ## Submitting a Bug Report 🐛
56
+
57
+ If you spot a problem with YOLOv5 please submit a Bug Report!
58
+
59
+ For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few short guidelines below to help users provide what we need to get started.
60
+
61
+ When asking a question, people will be better able to provide help if you provide **code** that they can easily understand and use to **reproduce** the problem. This is referred to by community members as creating a [minimum reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/). Your code that reproduces the problem should be:
62
+
63
+ - ✅ **Minimal** – Use as little code as possible that still produces the same problem
64
+ - ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
65
+ - ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
66
+
67
+ In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code should be:
68
+
69
+ - ✅ **Current** – Verify that your code is up-to-date with the current GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new copy to ensure your problem has not already been resolved by previous commits.
70
+ - ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
71
+
72
+ If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 **Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and provide a [minimum reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/) to help us better understand and diagnose your problem.
73
+
74
+ ## License
75
+
76
+ By contributing, you agree that your contributions will be licensed under the [AGPL-3.0 license](https://choosealicense.com/licenses/agpl-3.0/)
models/yolov5/LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published by
637
+ the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
models/yolov5/README.md ADDED
@@ -0,0 +1,473 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <p>
3
+ <a href="http://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
4
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
5
+ <!--
6
+ <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
7
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
8
+ -->
9
+ </p>
10
+
11
+ [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)
12
+
13
+ <div>
14
+ <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
15
+ <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
16
+ <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
17
+ <br>
18
+ <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
19
+ <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
20
+ <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
21
+ </div>
22
+ <br>
23
+
24
+ YOLOv5 🚀 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
25
+
26
+ We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href="https://docs.ultralytics.com/yolov5">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
27
+
28
+ To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
29
+
30
+ <div align="center">
31
+ <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
32
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
33
+ <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
34
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
35
+ <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
36
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
37
+ <a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
38
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
39
+ <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
40
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
41
+ <a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
42
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
43
+ <a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
44
+ </div>
45
+
46
+ </div>
47
+ <br>
48
+
49
+ ## <div align="center">YOLOv8 🚀 NEW</div>
50
+
51
+ We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
52
+
53
+ See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
54
+
55
+ [![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
56
+
57
+ ```bash
58
+ pip install ultralytics
59
+ ```
60
+
61
+ <div align="center">
62
+ <a href="https://ultralytics.com/yolov8" target="_blank">
63
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
64
+ </div>
65
+
66
+ ## <div align="center">Documentation</div>
67
+
68
+ See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5) for full documentation on training, testing and deployment. See below for quickstart examples.
69
+
70
+ <details open>
71
+ <summary>Install</summary>
72
+
73
+ Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
74
+
75
+ ```bash
76
+ git clone https://github.com/ultralytics/yolov5 # clone
77
+ cd yolov5
78
+ pip install -r requirements.txt # install
79
+ ```
80
+
81
+ </details>
82
+
83
+ <details>
84
+ <summary>Inference</summary>
85
+
86
+ YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
87
+
88
+ ```python
89
+ import torch
90
+
91
+ # Model
92
+ model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
93
+
94
+ # Images
95
+ img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
96
+
97
+ # Inference
98
+ results = model(img)
99
+
100
+ # Results
101
+ results.print() # or .show(), .save(), .crop(), .pandas(), etc.
102
+ ```
103
+
104
+ </details>
105
+
106
+ <details>
107
+ <summary>Inference with detect.py</summary>
108
+
109
+ `detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
110
+
111
+ ```bash
112
+ python detect.py --weights yolov5s.pt --source 0 # webcam
113
+ img.jpg # image
114
+ vid.mp4 # video
115
+ screen # screenshot
116
+ path/ # directory
117
+ list.txt # list of images
118
+ list.streams # list of streams
119
+ 'path/*.jpg' # glob
120
+ 'https://youtu.be/LNwODJXcvt4' # YouTube
121
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
122
+ ```
123
+
124
+ </details>
125
+
126
+ <details>
127
+ <summary>Training</summary>
128
+
129
+ The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) results. [Models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training) times faster). Use the largest `--batch-size` possible, or pass `--batch-size -1` for YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
130
+
131
+ ```bash
132
+ python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
133
+ yolov5s 64
134
+ yolov5m 40
135
+ yolov5l 24
136
+ yolov5x 16
137
+ ```
138
+
139
+ <img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
140
+
141
+ </details>
142
+
143
+ <details open>
144
+ <summary>Tutorials</summary>
145
+
146
+ - [Train Custom Data](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data) 🚀 RECOMMENDED
147
+ - [Tips for Best Training Results](https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results) ☘️
148
+ - [Multi-GPU Training](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training)
149
+ - [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) 🌟 NEW
150
+ - [TFLite, ONNX, CoreML, TensorRT Export](https://docs.ultralytics.com/yolov5/tutorials/model_export) 🚀
151
+ - [NVIDIA Jetson platform Deployment](https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano) 🌟 NEW
152
+ - [Test-Time Augmentation (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation)
153
+ - [Model Ensembling](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling)
154
+ - [Model Pruning/Sparsity](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity)
155
+ - [Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution)
156
+ - [Transfer Learning with Frozen Layers](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers)
157
+ - [Architecture Summary](https://docs.ultralytics.com/yolov5/tutorials/architecture_description) 🌟 NEW
158
+ - [Roboflow for Datasets, Labeling, and Active Learning](https://docs.ultralytics.com/yolov5/tutorials/roboflow_datasets_integration)
159
+ - [ClearML Logging](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) 🌟 NEW
160
+ - [YOLOv5 with Neural Magic's Deepsparse](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization) 🌟 NEW
161
+ - [Comet Logging](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration) 🌟 NEW
162
+
163
+ </details>
164
+
165
+ ## <div align="center">Integrations</div>
166
+
167
+ <br>
168
+ <a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
169
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png"></a>
170
+ <br>
171
+ <br>
172
+
173
+ <div align="center">
174
+ <a href="https://roboflow.com/?ref=ultralytics">
175
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" /></a>
176
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
177
+ <a href="https://cutt.ly/yolov5-readme-clearml">
178
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" /></a>
179
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
180
+ <a href="https://bit.ly/yolov5-readme-comet2">
181
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" /></a>
182
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
183
+ <a href="https://bit.ly/yolov5-neuralmagic">
184
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" /></a>
185
+ </div>
186
+
187
+ | Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
188
+ | :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
189
+ | Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save YOLOv5 models, resume training, and interactively visualise and debug predictions | Run YOLOv5 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
190
+
191
+ ## <div align="center">Ultralytics HUB</div>
192
+
193
+ Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
194
+
195
+ <a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
196
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
197
+
198
+ ## <div align="center">Why YOLOv5</div>
199
+
200
+ YOLOv5 has been designed to be super easy to get started and simple to learn. We prioritize real-world results.
201
+
202
+ <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
203
+ <details>
204
+ <summary>YOLOv5-P5 640 Figure</summary>
205
+
206
+ <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
207
+ </details>
208
+ <details>
209
+ <summary>Figure Notes</summary>
210
+
211
+ - **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
212
+ - **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
213
+ - **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
214
+ - **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
215
+
216
+ </details>
217
+
218
+ ### Pretrained Checkpoints
219
+
220
+ | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
221
+ | ----------------------------------------------------------------------------------------------- | --------------------- | -------------------- | ----------------- | ---------------------------- | ----------------------------- | ------------------------------ | ------------------ | ---------------------- |
222
+ | [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
223
+ | [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
224
+ | [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
225
+ | [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
226
+ | [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
227
+ | | | | | | | | | |
228
+ | [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
229
+ | [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
230
+ | [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
231
+ | [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
232
+ | [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+ [TTA] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
233
+
234
+ <details>
235
+ <summary>Table Notes</summary>
236
+
237
+ - All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
238
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
239
+ - **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
240
+ - **TTA** [Test Time Augmentation](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
241
+
242
+ </details>
243
+
244
+ ## <div align="center">Segmentation</div>
245
+
246
+ Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.
247
+
248
+ <details>
249
+ <summary>Segmentation Checkpoints</summary>
250
+
251
+ <div align="center">
252
+ <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
253
+ <img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
254
+ </div>
255
+
256
+ We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.
257
+
258
+ | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
259
+ | ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | --------------------------------------------- | ------------------------------ | ------------------------------ | ------------------ | ---------------------- |
260
+ | [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
261
+ | [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
262
+ | [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
263
+ | [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
264
+ | [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
265
+
266
+ - All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official
267
+ - **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
268
+ - **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image). <br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
269
+ - **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
270
+
271
+ </details>
272
+
273
+ <details>
274
+ <summary>Segmentation Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
275
+
276
+ ### Train
277
+
278
+ YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with `--data coco128-seg.yaml` argument and manual download of COCO-segments dataset with `bash data/scripts/get_coco.sh --train --val --segments` and then `python train.py --data coco.yaml`.
279
+
280
+ ```bash
281
+ # Single-GPU
282
+ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
283
+
284
+ # Multi-GPU DDP
285
+ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
286
+ ```
287
+
288
+ ### Val
289
+
290
+ Validate YOLOv5s-seg mask mAP on COCO dataset:
291
+
292
+ ```bash
293
+ bash data/scripts/get_coco.sh --val --segments # download COCO val segments split (780MB, 5000 images)
294
+ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate
295
+ ```
296
+
297
+ ### Predict
298
+
299
+ Use pretrained YOLOv5m-seg.pt to predict bus.jpg:
300
+
301
+ ```bash
302
+ python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
303
+ ```
304
+
305
+ ```python
306
+ model = torch.hub.load(
307
+ "ultralytics/yolov5", "custom", "yolov5m-seg.pt"
308
+ ) # load from PyTorch Hub (WARNING: inference not yet supported)
309
+ ```
310
+
311
+ | ![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) |
312
+ | ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
313
+
314
+ ### Export
315
+
316
+ Export YOLOv5s-seg model to ONNX and TensorRT:
317
+
318
+ ```bash
319
+ python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
320
+ ```
321
+
322
+ </details>
323
+
324
+ ## <div align="center">Classification</div>
325
+
326
+ YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation and deployment! See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2) and visit our [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) for quickstart tutorials.
327
+
328
+ <details>
329
+ <summary>Classification Checkpoints</summary>
330
+
331
+ <br>
332
+
333
+ We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.
334
+
335
+ | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
336
+ | -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ------------------------------ | ----------------------------------- | ------------------ | ---------------------- |
337
+ | [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
338
+ | [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
339
+ | [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
340
+ | [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
341
+ | [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
342
+ | | | | | | | | | |
343
+ | [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
344
+ | [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
345
+ | [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
346
+ | [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
347
+ | | | | | | | | | |
348
+ | [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
349
+ | [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
350
+ | [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
351
+ | [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
352
+
353
+ <details>
354
+ <summary>Table Notes (click to expand)</summary>
355
+
356
+ - All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
357
+ - **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
358
+ - **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
359
+ - **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
360
+
361
+ </details>
362
+ </details>
363
+
364
+ <details>
365
+ <summary>Classification Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
366
+
367
+ ### Train
368
+
369
+ YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.
370
+
371
+ ```bash
372
+ # Single-GPU
373
+ python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
374
+
375
+ # Multi-GPU DDP
376
+ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
377
+ ```
378
+
379
+ ### Val
380
+
381
+ Validate YOLOv5m-cls accuracy on ImageNet-1k dataset:
382
+
383
+ ```bash
384
+ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
385
+ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate
386
+ ```
387
+
388
+ ### Predict
389
+
390
+ Use pretrained YOLOv5s-cls.pt to predict bus.jpg:
391
+
392
+ ```bash
393
+ python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg
394
+ ```
395
+
396
+ ```python
397
+ model = torch.hub.load(
398
+ "ultralytics/yolov5", "custom", "yolov5s-cls.pt"
399
+ ) # load from PyTorch Hub
400
+ ```
401
+
402
+ ### Export
403
+
404
+ Export a group of trained YOLOv5s-cls, ResNet and EfficientNet models to ONNX and TensorRT:
405
+
406
+ ```bash
407
+ python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
408
+ ```
409
+
410
+ </details>
411
+
412
+ ## <div align="center">Environments</div>
413
+
414
+ Get started in seconds with our verified environments. Click each icon below for details.
415
+
416
+ <div align="center">
417
+ <a href="https://bit.ly/yolov5-paperspace-notebook">
418
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gradient.png" width="10%" /></a>
419
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
420
+ <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
421
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
422
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
423
+ <a href="https://www.kaggle.com/ultralytics/yolov5">
424
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
425
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
426
+ <a href="https://hub.docker.com/r/ultralytics/yolov5">
427
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
428
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
429
+ <a href="https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/">
430
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
431
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
432
+ <a href="https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/">
433
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
434
+ </div>
435
+
436
+ ## <div align="center">Contribute</div>
437
+
438
+ We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
439
+
440
+ <!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
441
+
442
+ <a href="https://github.com/ultralytics/yolov5/graphs/contributors">
443
+ <img src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" /></a>
444
+
445
+ ## <div align="center">License</div>
446
+
447
+ Ultralytics offers two licensing options to accommodate diverse use cases:
448
+
449
+ - **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for more details.
450
+ - **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://ultralytics.com/license).
451
+
452
+ ## <div align="center">Contact</div>
453
+
454
+ For YOLOv5 bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues), and join our [Discord](https://ultralytics.com/discord) community for questions and discussions!
455
+
456
+ <br>
457
+ <div align="center">
458
+ <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
459
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
460
+ <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
461
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
462
+ <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
463
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
464
+ <a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
465
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
466
+ <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
467
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
468
+ <a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="Ultralytics Instagram"></a>
469
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
470
+ <a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
471
+ </div>
472
+
473
+ [tta]: https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation
models/yolov5/README.zh-CN.md ADDED
@@ -0,0 +1,473 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <p>
3
+ <a href="http://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
4
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
5
+ <!--
6
+ <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
7
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
8
+ -->
9
+ </p>
10
+
11
+ [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)
12
+
13
+ <div>
14
+ <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
15
+ <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
16
+ <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
17
+ <br>
18
+ <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
19
+ <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
20
+ <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
21
+ </div>
22
+ <br>
23
+
24
+ YOLOv5 🚀 是世界上最受欢迎的视觉 AI,代表<a href="https://ultralytics.com"> Ultralytics </a>对未来视觉 AI 方法的开源研究,结合在数千小时的研究和开发中积累的经验教训和最佳实践。
25
+
26
+ 我们希望这里的资源能帮助您充分利用 YOLOv5。请浏览 YOLOv5 <a href="https://docs.ultralytics.com/yolov5/">文档</a> 了解详细信息,在 <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> 上提交问题以获得支持,并加入我们的 <a href="https://ultralytics.com/discord">Discord</a> 社区进行问题和讨论!
27
+
28
+ 如需申请企业许可,请在 [Ultralytics Licensing](https://ultralytics.com/license) 处填写表格
29
+
30
+ <div align="center">
31
+ <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
32
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
33
+ <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
34
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
35
+ <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
36
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
37
+ <a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
38
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
39
+ <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
40
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
41
+ <a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
42
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
43
+ <a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
44
+ </div>
45
+ </div>
46
+
47
+ ## <div align="center">YOLOv8 🚀 新品</div>
48
+
49
+ 我们很高兴宣布 Ultralytics YOLOv8 🚀 的发布,这是我们新推出的领先水平、最先进的(SOTA)模型,发布于 **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**。 YOLOv8 旨在快速、准确且易于使用,使其成为广泛的物体检测、图像分割和图像分类任务的极佳选择。
50
+
51
+ 请查看 [YOLOv8 文档](https://docs.ultralytics.com)了解详细信息,并开始使用:
52
+
53
+ [![PyPI 版本](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![下载量](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
54
+
55
+ ```commandline
56
+ pip install ultralytics
57
+ ```
58
+
59
+ <div align="center">
60
+ <a href="https://ultralytics.com/yolov8" target="_blank">
61
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
62
+ </div>
63
+
64
+ ## <div align="center">文档</div>
65
+
66
+ 有关训练、测试和部署的完整文档见[YOLOv5 文档](https://docs.ultralytics.com/yolov5/)。请参阅下面的快速入门示例。
67
+
68
+ <details open>
69
+ <summary>安装</summary>
70
+
71
+ 克隆 repo,并要求在 [**Python>=3.8.0**](https://www.python.org/) 环境中安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) ,且要求 [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/) 。
72
+
73
+ ```bash
74
+ git clone https://github.com/ultralytics/yolov5 # clone
75
+ cd yolov5
76
+ pip install -r requirements.txt # install
77
+ ```
78
+
79
+ </details>
80
+
81
+ <details>
82
+ <summary>推理</summary>
83
+
84
+ 使用 YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) 推理。最新 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 将自动的从 YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载。
85
+
86
+ ```python
87
+ import torch
88
+
89
+ # Model
90
+ model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
91
+
92
+ # Images
93
+ img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
94
+
95
+ # Inference
96
+ results = model(img)
97
+
98
+ # Results
99
+ results.print() # or .show(), .save(), .crop(), .pandas(), etc.
100
+ ```
101
+
102
+ </details>
103
+
104
+ <details>
105
+ <summary>使用 detect.py 推理</summary>
106
+
107
+ `detect.py` 在各种来源上运行推理, [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从 最新的YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载,并将结果保存到 `runs/detect` 。
108
+
109
+ ```bash
110
+ python detect.py --weights yolov5s.pt --source 0 # webcam
111
+ img.jpg # image
112
+ vid.mp4 # video
113
+ screen # screenshot
114
+ path/ # directory
115
+ list.txt # list of images
116
+ list.streams # list of streams
117
+ 'path/*.jpg' # glob
118
+ 'https://youtu.be/LNwODJXcvt4' # YouTube
119
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
120
+ ```
121
+
122
+ </details>
123
+
124
+ <details>
125
+ <summary>训练</summary>
126
+
127
+ 下面的命令重现 YOLOv5 在 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) 数据集上的结果。 最新的 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data)
128
+ 将自动的从 YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载。 YOLOv5n/s/m/l/x 在 V100 GPU 的训练时间为 1/2/4/6/8 天( [多GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training) 训练速度更快)。 尽可能使用更大的 `--batch-size` ,或通过 `--batch-size -1` 实现 YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092) 。下方显示的 batchsize 适用于 V100-16GB。
129
+
130
+ ```bash
131
+ python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
132
+ yolov5s 64
133
+ yolov5m 40
134
+ yolov5l 24
135
+ yolov5x 16
136
+ ```
137
+
138
+ <img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
139
+
140
+ </details>
141
+
142
+ <details open>
143
+ <summary>教程</summary>
144
+
145
+ - [训练自定义数据](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data) 🚀 推荐
146
+ - [获得最佳训练结果的技巧](https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results) ☘️
147
+ - [多GPU训练](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training)
148
+ - [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) 🌟 新
149
+ - [TFLite,ONNX,CoreML,TensorRT导出](https://docs.ultralytics.com/yolov5/tutorials/model_export) 🚀
150
+ - [NVIDIA Jetson平台部署](https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano) 🌟 新
151
+ - [测试时增强 (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation)
152
+ - [模型集成](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling)
153
+ - [模型剪枝/稀疏](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity)
154
+ - [超参数进化](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution)
155
+ - [冻结层的迁移学习](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers)
156
+ - [架构概述](https://docs.ultralytics.com/yolov5/tutorials/architecture_description) 🌟 新
157
+ - [Roboflow用于数据集、标注和主动学习](https://docs.ultralytics.com/yolov5/tutorials/roboflow_datasets_integration)
158
+ - [ClearML日志记录](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) 🌟 新
159
+ - [使用Neural Magic的Deepsparse的YOLOv5](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization) 🌟 新
160
+ - [Comet日志记录](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration) 🌟 新
161
+
162
+ </details>
163
+
164
+ ## <div align="center">模块集成</div>
165
+
166
+ <br>
167
+ <a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
168
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png"></a>
169
+ <br>
170
+ <br>
171
+
172
+ <div align="center">
173
+ <a href="https://roboflow.com/?ref=ultralytics">
174
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" /></a>
175
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
176
+ <a href="https://cutt.ly/yolov5-readme-clearml">
177
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" /></a>
178
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
179
+ <a href="https://bit.ly/yolov5-readme-comet2">
180
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" /></a>
181
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
182
+ <a href="https://bit.ly/yolov5-neuralmagic">
183
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" /></a>
184
+ </div>
185
+
186
+ | Roboflow | ClearML ⭐ 新 | Comet ⭐ 新 | Neural Magic ⭐ 新 |
187
+ | :--------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
188
+ | 将您的自定义数据集进行标注并直接导出到 YOLOv5 以进行训练 [Roboflow](https://roboflow.com/?ref=ultralytics) | 自动跟踪、可视化甚至远程训练 YOLOv5 [ClearML](https://cutt.ly/yolov5-readme-clearml)(开源!) | 永远免费,[Comet](https://bit.ly/yolov5-readme-comet2)可让您保存 YOLOv5 模型、恢复训练以及交互式可视化和调试预测 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic),运行 YOLOv5 推理的速度最高可提高6倍 |
189
+
190
+ ## <div align="center">Ultralytics HUB</div>
191
+
192
+ [Ultralytics HUB](https://bit.ly/ultralytics_hub) 是我们的⭐**新的**用于可视化数据集、训练 YOLOv5 🚀 模型并以无缝体验部署到现实世界的无代码解决方案。现在开始 **免费** 使用他!
193
+
194
+ <a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
195
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
196
+
197
+ ## <div align="center">为什么选择 YOLOv5</div>
198
+
199
+ YOLOv5 超级容易上手,简单易学。我们优先考虑现实世界的结果。
200
+
201
+ <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
202
+ <details>
203
+ <summary>YOLOv5-P5 640 图</summary>
204
+
205
+ <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
206
+ </details>
207
+ <details>
208
+ <summary>图表笔记</summary>
209
+
210
+ - **COCO AP val** 表示 mAP@0.5:0.95 指标,在 [COCO val2017](http://cocodataset.org) 数据集的 5000 张图像上测得, 图像包含 256 到 1536 各种推理大小。
211
+ - **显卡推理速度** 为在 [COCO val2017](http://cocodataset.org) 数据集上���平均推理时间,使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例,batchsize 为 32 。
212
+ - **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) , batchsize 为32。
213
+ - **复现命令** 为 `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
214
+
215
+ </details>
216
+
217
+ ### 预训练模型
218
+
219
+ | 模型 | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | 推理速度<br><sup>CPU b1<br>(ms) | 推理速度<br><sup>V100 b1<br>(ms) | 速度<br><sup>V100 b32<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>@640 (B) |
220
+ | ---------------------------------------------------------------------------------------------- | --------------------- | -------------------- | ----------------- | --------------------------------- | ---------------------------------- | ------------------------------- | ------------------ | ---------------------- |
221
+ | [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
222
+ | [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
223
+ | [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
224
+ | [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
225
+ | [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
226
+ | | | | | | | | | |
227
+ | [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
228
+ | [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
229
+ | [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
230
+ | [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
231
+ | [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+[TTA] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
232
+
233
+ <details>
234
+ <summary>笔记</summary>
235
+
236
+ - 所有模型都使用默认配置,训练 300 epochs。n和s模型使用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) ,其他模型都使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml) 。
237
+ - \*\*mAP<sup>val</sup>\*\*在单模型单尺度上计算,数据集使用 [COCO val2017](http://cocodataset.org) 。<br>复现命令 `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
238
+ - **推理速度**在 COCO val 图像总体时间上进行平均得到,测试环境使用[AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/)实例。 NMS 时间 (大约 1 ms/img) 不包括在内。<br>复现命令 `python val.py --data coco.yaml --img 640 --task speed --batch 1`
239
+ - **TTA** [测试时数据增强](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation) 包括反射和尺度变换。<br>复现命令 `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
240
+
241
+ </details>
242
+
243
+ ## <div align="center">实例分割模型 ⭐ 新</div>
244
+
245
+ 我们新的 YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) 实例分割模型是世界上最快和最准确的模型,击败所有当前 [SOTA 基准](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco)。我们使它非常易于训练、验证和部署。更多细节请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v7.0) 或访问我们的 [YOLOv5 分割 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) 以快速入门。
246
+
247
+ <details>
248
+ <summary>实例分割模型列表</summary>
249
+
250
+ <br>
251
+
252
+ <div align="center">
253
+ <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
254
+ <img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
255
+ </div>
256
+
257
+ 我们使用 A100 GPU 在 COCO 上以 640 图像大小训练了 300 epochs 得到 YOLOv5 分割模型。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。为了便于再现,我们在 Google [Colab Pro](https://colab.research.google.com/signup) 上进行了所有速度测试。
258
+
259
+ | 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 训练时长<br><sup>300 epochs<br>A100 GPU(小时) | 推理速度<br><sup>ONNX CPU<br>(ms) | 推理速度<br><sup>TRT A100<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>@640 (B) |
260
+ | ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | ----------------------------------------------- | ----------------------------------- | ----------------------------------- | ------------------ | ---------------------- |
261
+ | [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
262
+ | [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
263
+ | [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
264
+ | [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
265
+ | [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
266
+
267
+ - 所有模型使用 SGD 优化器训练, 都使用 `lr0=0.01` 和 `weight_decay=5e-5` 参数, 图像大小为 640 。<br>训练 log 可以查看 https://wandb.ai/glenn-jocher/YOLOv5_v70_official
268
+ - **准确性**结果都在 COCO 数据集上,使用单模型单尺度测试得到。<br>复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
269
+ - **推理速度**是使用 100 张图像推理时间进行平均得到,测试环境使用 [Colab Pro](https://colab.research.google.com/signup) 上 A100 高 RAM 实例。结果仅表示推理速度(NMS 每张图像增加约 1 毫秒)。<br>复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
270
+ - **模型转换**到 FP32 的 ONNX 和 FP16 的 TensorRT 脚本为 `export.py`.<br>运行命令 `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
271
+
272
+ </details>
273
+
274
+ <details>
275
+ <summary>分割模型使用示例 &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
276
+
277
+ ### 训练
278
+
279
+ YOLOv5分割训练支持自动下载 COCO128-seg 分割数据集,用户仅需在启动指令中包含 `--data coco128-seg.yaml` 参数。 若要手动下载,使用命令 `bash data/scripts/get_coco.sh --train --val --segments`, 在下载完毕后,使用命令 `python train.py --data coco.yaml` 开启训练。
280
+
281
+ ```bash
282
+ # 单 GPU
283
+ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
284
+
285
+ # 多 GPU, DDP 模式
286
+ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
287
+ ```
288
+
289
+ ### 验证
290
+
291
+ 在 COCO 数据集上验证 YOLOv5s-seg mask mAP:
292
+
293
+ ```bash
294
+ bash data/scripts/get_coco.sh --val --segments # 下载 COCO val segments 数据集 (780MB, 5000 images)
295
+ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # 验证
296
+ ```
297
+
298
+ ### 预测
299
+
300
+ 使用预训练的 YOLOv5m-seg.pt 来预测 bus.jpg:
301
+
302
+ ```bash
303
+ python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
304
+ ```
305
+
306
+ ```python
307
+ model = torch.hub.load(
308
+ "ultralytics/yolov5", "custom", "yolov5m-seg.pt"
309
+ ) # 从load from PyTorch Hub 加载模型 (WARNING: 推理暂未支持)
310
+ ```
311
+
312
+ | ![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) |
313
+ | ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
314
+
315
+ ### 模型导出
316
+
317
+ 将 YOLOv5s-seg 模型导出到 ONNX 和 TensorRT:
318
+
319
+ ```bash
320
+ python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
321
+ ```
322
+
323
+ </details>
324
+
325
+ ## <div align="center">分类网络 ⭐ 新</div>
326
+
327
+ YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) 带来对分类模型训练、验证和部署的支持!详情请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v6.2) 或访问我们的 [YOLOv5 分类 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) 以快速入门。
328
+
329
+ <details>
330
+ <summary>分类网络模型</summary>
331
+
332
+ <br>
333
+
334
+ 我们使用 4xA100 实例在 ImageNet 上训练了 90 个 epochs 得到 YOLOv5-cls 分类模型,我们训练了 ResNet 和 EfficientNet 模型以及相同的默认训练设置以进行比较。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。为了便于重现,我们在 Google 上进行了所有速度测试 [Colab Pro](https://colab.research.google.com/signup) 。
335
+
336
+ | 模型 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 训练时长<br><sup>90 epochs<br>4xA100(小时) | 推理速度<br><sup>ONNX CPU<br>(ms) | 推理速度<br><sup>TensorRT V100<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>@640 (B) |
337
+ | -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ----------------------------------- | ---------------------------------------- | ---------------- | ---------------------- |
338
+ | [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
339
+ | [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
340
+ | [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
341
+ | [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
342
+ | [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
343
+ | | | | | | | | | |
344
+ | [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
345
+ | [Resnetzch](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
346
+ | [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
347
+ | [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
348
+ | | | | | | | | | |
349
+ | [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
350
+ | [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
351
+ | [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
352
+ | [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
353
+
354
+ <details>
355
+ <summary>Table Notes (点击以展开)</summary>
356
+
357
+ - 所有模型都使用 SGD 优化器训练 90 个 epochs,都使用 `lr0=0.001` 和 `weight_decay=5e-5` 参数, 图像大小为 224 ,且都使用默认设置。<br>训练 log 可以查看 https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
358
+ - **准确性**都在单模型单尺度上计算,数据集使用 [ImageNet-1k](https://www.image-net.org/index.php) 。<br>复现命令 `python classify/val.py --data ../datasets/imagenet --img 224`
359
+ - **推理速度**是使用 100 个推理图像进行平均得到,测试环境使用谷歌 [Colab Pro](https://colab.research.google.com/signup) V100 高 RAM 实例。<br>复现命令 `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
360
+ - **模型导出**到 FP32 的 ONNX 和 FP16 的 TensorRT 使用 `export.py` 。<br>复现命令 `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
361
+ </details>
362
+ </details>
363
+
364
+ <details>
365
+ <summary>分类训练示例 &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
366
+
367
+ ### 训练
368
+
369
+ YOLOv5 分类训练支持自动下载 MNIST、Fashion-MNIST、CIFAR10、CIFAR100、Imagenette、Imagewoof 和 ImageNet 数据集,命令中使用 `--data` 即可。 MNIST 示例 `--data mnist` 。
370
+
371
+ ```bash
372
+ # 单 GPU
373
+ python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
374
+
375
+ # 多 GPU, DDP 模式
376
+ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
377
+ ```
378
+
379
+ ### 验证
380
+
381
+ 在 ImageNet-1k 数据集上验证 YOLOv5m-cls 的准确性:
382
+
383
+ ```bash
384
+ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
385
+ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate
386
+ ```
387
+
388
+ ### 预测
389
+
390
+ 使用预训练的 YOLOv5s-cls.pt 来预测 bus.jpg:
391
+
392
+ ```bash
393
+ python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg
394
+ ```
395
+
396
+ ```python
397
+ model = torch.hub.load(
398
+ "ultralytics/yolov5", "custom", "yolov5s-cls.pt"
399
+ ) # load from PyTorch Hub
400
+ ```
401
+
402
+ ### 模型导出
403
+
404
+ 将一组经过训练的 YOLOv5s-cls、ResNet 和 EfficientNet 模型导出到 ONNX 和 TensorRT:
405
+
406
+ ```bash
407
+ python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
408
+ ```
409
+
410
+ </details>
411
+
412
+ ## <div align="center">环境</div>
413
+
414
+ 使用下面我们经过验证的环境,在几秒钟内开始使用 YOLOv5 。单击下面的图标了解详细信息。
415
+
416
+ <div align="center">
417
+ <a href="https://bit.ly/yolov5-paperspace-notebook">
418
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gradient.png" width="10%" /></a>
419
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
420
+ <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
421
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
422
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
423
+ <a href="https://www.kaggle.com/ultralytics/yolov5">
424
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
425
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
426
+ <a href="https://hub.docker.com/r/ultralytics/yolov5">
427
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
428
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
429
+ <a href="https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/">
430
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
431
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
432
+ <a href="https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/">
433
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
434
+ </div>
435
+
436
+ ## <div align="center">贡献</div>
437
+
438
+ 我们喜欢您的意见或建议!我们希望尽可能简单和透明地为 YOLOv5 做出贡献。请看我们的 [投稿指南](https://docs.ultralytics.com/help/contributing/),并填写 [YOLOv5调查](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 向我们发送您的体验反馈。感谢我们所有的贡献者!
439
+
440
+ <!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
441
+
442
+ <a href="https://github.com/ultralytics/yolov5/graphs/contributors">
443
+ <img src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" /></a>
444
+
445
+ ## <div align="center">许可证</div>
446
+
447
+ Ultralytics 提供两种许可证选项以适应各种使用场景:
448
+
449
+ - **AGPL-3.0 许可证**:这个[OSI 批准](https://opensource.org/licenses/)的开源许可证非常适合学生和爱好者,可以推动开放的协作和知识分享。请查看[LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) 文件以了解更多细节。
450
+ - **企业许可证**:专为商业用途设计,该许可证允许将 Ultralytics 的软件和 AI 模型无缝集成到商业产品和服务中,从而绕过 AGPL-3.0 的开源要求。如果您的场景涉及将我们的解决方案嵌入到商业产品中,请通过 [Ultralytics Licensing](https://ultralytics.com/license)与我们联系。
451
+
452
+ ## <div align="center">联系方式</div>
453
+
454
+ 对于 Ultralytics 的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues),并加入我们的 [Discord](https://ultralytics.com/discord) 社区进行问题和讨论!
455
+
456
+ <br>
457
+ <div align="center">
458
+ <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
459
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
460
+ <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
461
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
462
+ <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
463
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
464
+ <a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
465
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
466
+ <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
467
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
468
+ <a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="Ultralytics Instagram"></a>
469
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
470
+ <a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
471
+ </div>
472
+
473
+ [tta]: https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation
models/yolov5/__pycache__/export.cpython-310.pyc ADDED
Binary file (31.6 kB). View file
 
models/yolov5/__pycache__/export.cpython-311.pyc ADDED
Binary file (59.7 kB). View file
 
models/yolov5/__pycache__/hubconf.cpython-310.pyc ADDED
Binary file (5.29 kB). View file
 
models/yolov5/__pycache__/hubconf.cpython-311.pyc ADDED
Binary file (8.56 kB). View file
 
models/yolov5/benchmarks.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Run YOLOv5 benchmarks on all supported export formats.
4
+
5
+ Format | `export.py --include` | Model
6
+ --- | --- | ---
7
+ PyTorch | - | yolov5s.pt
8
+ TorchScript | `torchscript` | yolov5s.torchscript
9
+ ONNX | `onnx` | yolov5s.onnx
10
+ OpenVINO | `openvino` | yolov5s_openvino_model/
11
+ TensorRT | `engine` | yolov5s.engine
12
+ CoreML | `coreml` | yolov5s.mlmodel
13
+ TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
+ TensorFlow GraphDef | `pb` | yolov5s.pb
15
+ TensorFlow Lite | `tflite` | yolov5s.tflite
16
+ TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
+ TensorFlow.js | `tfjs` | yolov5s_web_model/
18
+
19
+ Requirements:
20
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
21
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
22
+ $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
23
+
24
+ Usage:
25
+ $ python benchmarks.py --weights yolov5s.pt --img 640
26
+ """
27
+
28
+ import argparse
29
+ import platform
30
+ import sys
31
+ import time
32
+ from pathlib import Path
33
+
34
+ import pandas as pd
35
+
36
+ FILE = Path(__file__).resolve()
37
+ ROOT = FILE.parents[0] # YOLOv5 root directory
38
+ if str(ROOT) not in sys.path:
39
+ sys.path.append(str(ROOT)) # add ROOT to PATH
40
+ # ROOT = ROOT.relative_to(Path.cwd()) # relative
41
+
42
+ import export
43
+ from models.experimental import attempt_load
44
+ from models.yolo import SegmentationModel
45
+ from segment.val import run as val_seg
46
+ from utils import notebook_init
47
+ from utils.general import LOGGER, check_yaml, file_size, print_args
48
+ from utils.torch_utils import select_device
49
+ from val import run as val_det
50
+
51
+
52
+ def run(
53
+ weights=ROOT / "yolov5s.pt", # weights path
54
+ imgsz=640, # inference size (pixels)
55
+ batch_size=1, # batch size
56
+ data=ROOT / "data/coco128.yaml", # dataset.yaml path
57
+ device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
58
+ half=False, # use FP16 half-precision inference
59
+ test=False, # test exports only
60
+ pt_only=False, # test PyTorch only
61
+ hard_fail=False, # throw error on benchmark failure
62
+ ):
63
+ y, t = [], time.time()
64
+ device = select_device(device)
65
+ model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
66
+ for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
67
+ try:
68
+ assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported
69
+ assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
70
+ if "cpu" in device.type:
71
+ assert cpu, "inference not supported on CPU"
72
+ if "cuda" in device.type:
73
+ assert gpu, "inference not supported on GPU"
74
+
75
+ # Export
76
+ if f == "-":
77
+ w = weights # PyTorch format
78
+ else:
79
+ w = export.run(
80
+ weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half
81
+ )[-1] # all others
82
+ assert suffix in str(w), "export failed"
83
+
84
+ # Validate
85
+ if model_type == SegmentationModel:
86
+ result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
87
+ metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
88
+ else: # DetectionModel:
89
+ result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
90
+ metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
91
+ speed = result[2][1] # times (preprocess, inference, postprocess)
92
+ y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
93
+ except Exception as e:
94
+ if hard_fail:
95
+ assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}"
96
+ LOGGER.warning(f"WARNING ⚠️ Benchmark failure for {name}: {e}")
97
+ y.append([name, None, None, None]) # mAP, t_inference
98
+ if pt_only and i == 0:
99
+ break # break after PyTorch
100
+
101
+ # Print results
102
+ LOGGER.info("\n")
103
+ parse_opt()
104
+ notebook_init() # print system info
105
+ c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""]
106
+ py = pd.DataFrame(y, columns=c)
107
+ LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)")
108
+ LOGGER.info(str(py if map else py.iloc[:, :2]))
109
+ if hard_fail and isinstance(hard_fail, str):
110
+ metrics = py["mAP50-95"].array # values to compare to floor
111
+ floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
112
+ assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}"
113
+ return py
114
+
115
+
116
+ def test(
117
+ weights=ROOT / "yolov5s.pt", # weights path
118
+ imgsz=640, # inference size (pixels)
119
+ batch_size=1, # batch size
120
+ data=ROOT / "data/coco128.yaml", # dataset.yaml path
121
+ device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
122
+ half=False, # use FP16 half-precision inference
123
+ test=False, # test exports only
124
+ pt_only=False, # test PyTorch only
125
+ hard_fail=False, # throw error on benchmark failure
126
+ ):
127
+ y, t = [], time.time()
128
+ device = select_device(device)
129
+ for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
130
+ try:
131
+ w = (
132
+ weights
133
+ if f == "-"
134
+ else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]
135
+ ) # weights
136
+ assert suffix in str(w), "export failed"
137
+ y.append([name, True])
138
+ except Exception:
139
+ y.append([name, False]) # mAP, t_inference
140
+
141
+ # Print results
142
+ LOGGER.info("\n")
143
+ parse_opt()
144
+ notebook_init() # print system info
145
+ py = pd.DataFrame(y, columns=["Format", "Export"])
146
+ LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)")
147
+ LOGGER.info(str(py))
148
+ return py
149
+
150
+
151
+ def parse_opt():
152
+ parser = argparse.ArgumentParser()
153
+ parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
154
+ parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
155
+ parser.add_argument("--batch-size", type=int, default=1, help="batch size")
156
+ parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
157
+ parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
158
+ parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
159
+ parser.add_argument("--test", action="store_true", help="test exports only")
160
+ parser.add_argument("--pt-only", action="store_true", help="test PyTorch only")
161
+ parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric")
162
+ opt = parser.parse_args()
163
+ opt.data = check_yaml(opt.data) # check YAML
164
+ print_args(vars(opt))
165
+ return opt
166
+
167
+
168
+ def main(opt):
169
+ test(**vars(opt)) if opt.test else run(**vars(opt))
170
+
171
+
172
+ if __name__ == "__main__":
173
+ opt = parse_opt()
174
+ main(opt)
models/yolov5/classify/predict.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
4
+
5
+ Usage - sources:
6
+ $ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam
7
+ img.jpg # image
8
+ vid.mp4 # video
9
+ screen # screenshot
10
+ path/ # directory
11
+ list.txt # list of images
12
+ list.streams # list of streams
13
+ 'path/*.jpg' # glob
14
+ 'https://youtu.be/LNwODJXcvt4' # YouTube
15
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
16
+
17
+ Usage - formats:
18
+ $ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
19
+ yolov5s-cls.torchscript # TorchScript
20
+ yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
21
+ yolov5s-cls_openvino_model # OpenVINO
22
+ yolov5s-cls.engine # TensorRT
23
+ yolov5s-cls.mlmodel # CoreML (macOS-only)
24
+ yolov5s-cls_saved_model # TensorFlow SavedModel
25
+ yolov5s-cls.pb # TensorFlow GraphDef
26
+ yolov5s-cls.tflite # TensorFlow Lite
27
+ yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
28
+ yolov5s-cls_paddle_model # PaddlePaddle
29
+ """
30
+
31
+ import argparse
32
+ import os
33
+ import platform
34
+ import sys
35
+ from pathlib import Path
36
+
37
+ import torch
38
+ import torch.nn.functional as F
39
+
40
+ FILE = Path(__file__).resolve()
41
+ ROOT = FILE.parents[1] # YOLOv5 root directory
42
+ if str(ROOT) not in sys.path:
43
+ sys.path.append(str(ROOT)) # add ROOT to PATH
44
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
45
+
46
+ from ultralytics.utils.plotting import Annotator
47
+
48
+ from models.common import DetectMultiBackend
49
+ from utils.augmentations import classify_transforms
50
+ from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
51
+ from utils.general import (
52
+ LOGGER,
53
+ Profile,
54
+ check_file,
55
+ check_img_size,
56
+ check_imshow,
57
+ check_requirements,
58
+ colorstr,
59
+ cv2,
60
+ increment_path,
61
+ print_args,
62
+ strip_optimizer,
63
+ )
64
+ from utils.torch_utils import select_device, smart_inference_mode
65
+
66
+
67
+ @smart_inference_mode()
68
+ def run(
69
+ weights=ROOT / "yolov5s-cls.pt", # model.pt path(s)
70
+ source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
71
+ data=ROOT / "data/coco128.yaml", # dataset.yaml path
72
+ imgsz=(224, 224), # inference size (height, width)
73
+ device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
74
+ view_img=False, # show results
75
+ save_txt=False, # save results to *.txt
76
+ nosave=False, # do not save images/videos
77
+ augment=False, # augmented inference
78
+ visualize=False, # visualize features
79
+ update=False, # update all models
80
+ project=ROOT / "runs/predict-cls", # save results to project/name
81
+ name="exp", # save results to project/name
82
+ exist_ok=False, # existing project/name ok, do not increment
83
+ half=False, # use FP16 half-precision inference
84
+ dnn=False, # use OpenCV DNN for ONNX inference
85
+ vid_stride=1, # video frame-rate stride
86
+ ):
87
+ source = str(source)
88
+ save_img = not nosave and not source.endswith(".txt") # save inference images
89
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
90
+ is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
91
+ webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
92
+ screenshot = source.lower().startswith("screen")
93
+ if is_url and is_file:
94
+ source = check_file(source) # download
95
+
96
+ # Directories
97
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
98
+ (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
99
+
100
+ # Load model
101
+ device = select_device(device)
102
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
103
+ stride, names, pt = model.stride, model.names, model.pt
104
+ imgsz = check_img_size(imgsz, s=stride) # check image size
105
+
106
+ # Dataloader
107
+ bs = 1 # batch_size
108
+ if webcam:
109
+ view_img = check_imshow(warn=True)
110
+ dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
111
+ bs = len(dataset)
112
+ elif screenshot:
113
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
114
+ else:
115
+ dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
116
+ vid_path, vid_writer = [None] * bs, [None] * bs
117
+
118
+ # Run inference
119
+ model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
120
+ seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
121
+ for path, im, im0s, vid_cap, s in dataset:
122
+ with dt[0]:
123
+ im = torch.Tensor(im).to(model.device)
124
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
125
+ if len(im.shape) == 3:
126
+ im = im[None] # expand for batch dim
127
+
128
+ # Inference
129
+ with dt[1]:
130
+ results = model(im)
131
+
132
+ # Post-process
133
+ with dt[2]:
134
+ pred = F.softmax(results, dim=1) # probabilities
135
+
136
+ # Process predictions
137
+ for i, prob in enumerate(pred): # per image
138
+ seen += 1
139
+ if webcam: # batch_size >= 1
140
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
141
+ s += f"{i}: "
142
+ else:
143
+ p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
144
+
145
+ p = Path(p) # to Path
146
+ save_path = str(save_dir / p.name) # im.jpg
147
+ txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
148
+
149
+ s += "%gx%g " % im.shape[2:] # print string
150
+ annotator = Annotator(im0, example=str(names), pil=True)
151
+
152
+ # Print results
153
+ top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
154
+ s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
155
+
156
+ # Write results
157
+ text = "\n".join(f"{prob[j]:.2f} {names[j]}" for j in top5i)
158
+ if save_img or view_img: # Add bbox to image
159
+ annotator.text([32, 32], text, txt_color=(255, 255, 255))
160
+ if save_txt: # Write to file
161
+ with open(f"{txt_path}.txt", "a") as f:
162
+ f.write(text + "\n")
163
+
164
+ # Stream results
165
+ im0 = annotator.result()
166
+ if view_img:
167
+ if platform.system() == "Linux" and p not in windows:
168
+ windows.append(p)
169
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
170
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
171
+ cv2.imshow(str(p), im0)
172
+ cv2.waitKey(1) # 1 millisecond
173
+
174
+ # Save results (image with detections)
175
+ if save_img:
176
+ if dataset.mode == "image":
177
+ cv2.imwrite(save_path, im0)
178
+ else: # 'video' or 'stream'
179
+ if vid_path[i] != save_path: # new video
180
+ vid_path[i] = save_path
181
+ if isinstance(vid_writer[i], cv2.VideoWriter):
182
+ vid_writer[i].release() # release previous video writer
183
+ if vid_cap: # video
184
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
185
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
186
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
187
+ else: # stream
188
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
189
+ save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
190
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
191
+ vid_writer[i].write(im0)
192
+
193
+ # Print time (inference-only)
194
+ LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms")
195
+
196
+ # Print results
197
+ t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
198
+ LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
199
+ if save_txt or save_img:
200
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
201
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
202
+ if update:
203
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
204
+
205
+
206
+ def parse_opt():
207
+ parser = argparse.ArgumentParser()
208
+ parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model path(s)")
209
+ parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
210
+ parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
211
+ parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[224], help="inference size h,w")
212
+ parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
213
+ parser.add_argument("--view-img", action="store_true", help="show results")
214
+ parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
215
+ parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
216
+ parser.add_argument("--augment", action="store_true", help="augmented inference")
217
+ parser.add_argument("--visualize", action="store_true", help="visualize features")
218
+ parser.add_argument("--update", action="store_true", help="update all models")
219
+ parser.add_argument("--project", default=ROOT / "runs/predict-cls", help="save results to project/name")
220
+ parser.add_argument("--name", default="exp", help="save results to project/name")
221
+ parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
222
+ parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
223
+ parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
224
+ parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
225
+ opt = parser.parse_args()
226
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
227
+ print_args(vars(opt))
228
+ return opt
229
+
230
+
231
+ def main(opt):
232
+ check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
233
+ run(**vars(opt))
234
+
235
+
236
+ if __name__ == "__main__":
237
+ opt = parse_opt()
238
+ main(opt)
models/yolov5/classify/train.py ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Train a YOLOv5 classifier model on a classification dataset.
4
+
5
+ Usage - Single-GPU training:
6
+ $ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
7
+
8
+ Usage - Multi-GPU DDP training:
9
+ $ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
10
+
11
+ Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
12
+ YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
13
+ Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
14
+ """
15
+
16
+ import argparse
17
+ import os
18
+ import subprocess
19
+ import sys
20
+ import time
21
+ from copy import deepcopy
22
+ from datetime import datetime
23
+ from pathlib import Path
24
+
25
+ import torch
26
+ import torch.distributed as dist
27
+ import torch.hub as hub
28
+ import torch.optim.lr_scheduler as lr_scheduler
29
+ import torchvision
30
+ from torch.cuda import amp
31
+ from tqdm import tqdm
32
+
33
+ FILE = Path(__file__).resolve()
34
+ ROOT = FILE.parents[1] # YOLOv5 root directory
35
+ if str(ROOT) not in sys.path:
36
+ sys.path.append(str(ROOT)) # add ROOT to PATH
37
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
38
+
39
+ from classify import val as validate
40
+ from models.experimental import attempt_load
41
+ from models.yolo import ClassificationModel, DetectionModel
42
+ from utils.dataloaders import create_classification_dataloader
43
+ from utils.general import (
44
+ DATASETS_DIR,
45
+ LOGGER,
46
+ TQDM_BAR_FORMAT,
47
+ WorkingDirectory,
48
+ check_git_info,
49
+ check_git_status,
50
+ check_requirements,
51
+ colorstr,
52
+ download,
53
+ increment_path,
54
+ init_seeds,
55
+ print_args,
56
+ yaml_save,
57
+ )
58
+ from utils.loggers import GenericLogger
59
+ from utils.plots import imshow_cls
60
+ from utils.torch_utils import (
61
+ ModelEMA,
62
+ de_parallel,
63
+ model_info,
64
+ reshape_classifier_output,
65
+ select_device,
66
+ smart_DDP,
67
+ smart_optimizer,
68
+ smartCrossEntropyLoss,
69
+ torch_distributed_zero_first,
70
+ )
71
+
72
+ LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
73
+ RANK = int(os.getenv("RANK", -1))
74
+ WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
75
+ GIT_INFO = check_git_info()
76
+
77
+
78
+ def train(opt, device):
79
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
80
+ save_dir, data, bs, epochs, nw, imgsz, pretrained = (
81
+ opt.save_dir,
82
+ Path(opt.data),
83
+ opt.batch_size,
84
+ opt.epochs,
85
+ min(os.cpu_count() - 1, opt.workers),
86
+ opt.imgsz,
87
+ str(opt.pretrained).lower() == "true",
88
+ )
89
+ cuda = device.type != "cpu"
90
+
91
+ # Directories
92
+ wdir = save_dir / "weights"
93
+ wdir.mkdir(parents=True, exist_ok=True) # make dir
94
+ last, best = wdir / "last.pt", wdir / "best.pt"
95
+
96
+ # Save run settings
97
+ yaml_save(save_dir / "opt.yaml", vars(opt))
98
+
99
+ # Logger
100
+ logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
101
+
102
+ # Download Dataset
103
+ with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
104
+ data_dir = data if data.is_dir() else (DATASETS_DIR / data)
105
+ if not data_dir.is_dir():
106
+ LOGGER.info(f"\nDataset not found ⚠️, missing path {data_dir}, attempting download...")
107
+ t = time.time()
108
+ if str(data) == "imagenet":
109
+ subprocess.run(["bash", str(ROOT / "data/scripts/get_imagenet.sh")], shell=True, check=True)
110
+ else:
111
+ url = f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip"
112
+ download(url, dir=data_dir.parent)
113
+ s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
114
+ LOGGER.info(s)
115
+
116
+ # Dataloaders
117
+ nc = len([x for x in (data_dir / "train").glob("*") if x.is_dir()]) # number of classes
118
+ trainloader = create_classification_dataloader(
119
+ path=data_dir / "train",
120
+ imgsz=imgsz,
121
+ batch_size=bs // WORLD_SIZE,
122
+ augment=True,
123
+ cache=opt.cache,
124
+ rank=LOCAL_RANK,
125
+ workers=nw,
126
+ )
127
+
128
+ test_dir = data_dir / "test" if (data_dir / "test").exists() else data_dir / "val" # data/test or data/val
129
+ if RANK in {-1, 0}:
130
+ testloader = create_classification_dataloader(
131
+ path=test_dir,
132
+ imgsz=imgsz,
133
+ batch_size=bs // WORLD_SIZE * 2,
134
+ augment=False,
135
+ cache=opt.cache,
136
+ rank=-1,
137
+ workers=nw,
138
+ )
139
+
140
+ # Model
141
+ with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
142
+ if Path(opt.model).is_file() or opt.model.endswith(".pt"):
143
+ model = attempt_load(opt.model, device="cpu", fuse=False)
144
+ elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
145
+ model = torchvision.models.__dict__[opt.model](weights="IMAGENET1K_V1" if pretrained else None)
146
+ else:
147
+ m = hub.list("ultralytics/yolov5") # + hub.list('pytorch/vision') # models
148
+ raise ModuleNotFoundError(f"--model {opt.model} not found. Available models are: \n" + "\n".join(m))
149
+ if isinstance(model, DetectionModel):
150
+ LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
151
+ model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
152
+ reshape_classifier_output(model, nc) # update class count
153
+ for m in model.modules():
154
+ if not pretrained and hasattr(m, "reset_parameters"):
155
+ m.reset_parameters()
156
+ if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
157
+ m.p = opt.dropout # set dropout
158
+ for p in model.parameters():
159
+ p.requires_grad = True # for training
160
+ model = model.to(device)
161
+
162
+ # Info
163
+ if RANK in {-1, 0}:
164
+ model.names = trainloader.dataset.classes # attach class names
165
+ model.transforms = testloader.dataset.torch_transforms # attach inference transforms
166
+ model_info(model)
167
+ if opt.verbose:
168
+ LOGGER.info(model)
169
+ images, labels = next(iter(trainloader))
170
+ file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / "train_images.jpg")
171
+ logger.log_images(file, name="Train Examples")
172
+ logger.log_graph(model, imgsz) # log model
173
+
174
+ # Optimizer
175
+ optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
176
+
177
+ # Scheduler
178
+ lrf = 0.01 # final lr (fraction of lr0)
179
+ # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
180
+ lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear
181
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
182
+ # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
183
+ # final_div_factor=1 / 25 / lrf)
184
+
185
+ # EMA
186
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
187
+
188
+ # DDP mode
189
+ if cuda and RANK != -1:
190
+ model = smart_DDP(model)
191
+
192
+ # Train
193
+ t0 = time.time()
194
+ criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
195
+ best_fitness = 0.0
196
+ scaler = amp.GradScaler(enabled=cuda)
197
+ val = test_dir.stem # 'val' or 'test'
198
+ LOGGER.info(
199
+ f'Image sizes {imgsz} train, {imgsz} test\n'
200
+ f'Using {nw * WORLD_SIZE} dataloader workers\n'
201
+ f"Logging results to {colorstr('bold', save_dir)}\n"
202
+ f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
203
+ f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}"
204
+ )
205
+ for epoch in range(epochs): # loop over the dataset multiple times
206
+ tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
207
+ model.train()
208
+ if RANK != -1:
209
+ trainloader.sampler.set_epoch(epoch)
210
+ pbar = enumerate(trainloader)
211
+ if RANK in {-1, 0}:
212
+ pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
213
+ for i, (images, labels) in pbar: # progress bar
214
+ images, labels = images.to(device, non_blocking=True), labels.to(device)
215
+
216
+ # Forward
217
+ with amp.autocast(enabled=cuda): # stability issues when enabled
218
+ loss = criterion(model(images), labels)
219
+
220
+ # Backward
221
+ scaler.scale(loss).backward()
222
+
223
+ # Optimize
224
+ scaler.unscale_(optimizer) # unscale gradients
225
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
226
+ scaler.step(optimizer)
227
+ scaler.update()
228
+ optimizer.zero_grad()
229
+ if ema:
230
+ ema.update(model)
231
+
232
+ if RANK in {-1, 0}:
233
+ # Print
234
+ tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
235
+ mem = "%.3gG" % (torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0) # (GB)
236
+ pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + " " * 36
237
+
238
+ # Test
239
+ if i == len(pbar) - 1: # last batch
240
+ top1, top5, vloss = validate.run(
241
+ model=ema.ema, dataloader=testloader, criterion=criterion, pbar=pbar
242
+ ) # test accuracy, loss
243
+ fitness = top1 # define fitness as top1 accuracy
244
+
245
+ # Scheduler
246
+ scheduler.step()
247
+
248
+ # Log metrics
249
+ if RANK in {-1, 0}:
250
+ # Best fitness
251
+ if fitness > best_fitness:
252
+ best_fitness = fitness
253
+
254
+ # Log
255
+ metrics = {
256
+ "train/loss": tloss,
257
+ f"{val}/loss": vloss,
258
+ "metrics/accuracy_top1": top1,
259
+ "metrics/accuracy_top5": top5,
260
+ "lr/0": optimizer.param_groups[0]["lr"],
261
+ } # learning rate
262
+ logger.log_metrics(metrics, epoch)
263
+
264
+ # Save model
265
+ final_epoch = epoch + 1 == epochs
266
+ if (not opt.nosave) or final_epoch:
267
+ ckpt = {
268
+ "epoch": epoch,
269
+ "best_fitness": best_fitness,
270
+ "model": deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
271
+ "ema": None, # deepcopy(ema.ema).half(),
272
+ "updates": ema.updates,
273
+ "optimizer": None, # optimizer.state_dict(),
274
+ "opt": vars(opt),
275
+ "git": GIT_INFO, # {remote, branch, commit} if a git repo
276
+ "date": datetime.now().isoformat(),
277
+ }
278
+
279
+ # Save last, best and delete
280
+ torch.save(ckpt, last)
281
+ if best_fitness == fitness:
282
+ torch.save(ckpt, best)
283
+ del ckpt
284
+
285
+ # Train complete
286
+ if RANK in {-1, 0} and final_epoch:
287
+ LOGGER.info(
288
+ f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
289
+ f"\nResults saved to {colorstr('bold', save_dir)}"
290
+ f'\nPredict: python classify/predict.py --weights {best} --source im.jpg'
291
+ f'\nValidate: python classify/val.py --weights {best} --data {data_dir}'
292
+ f'\nExport: python export.py --weights {best} --include onnx'
293
+ f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
294
+ f'\nVisualize: https://netron.app\n'
295
+ )
296
+
297
+ # Plot examples
298
+ images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
299
+ pred = torch.max(ema.ema(images.to(device)), 1)[1]
300
+ file = imshow_cls(images, labels, pred, de_parallel(model).names, verbose=False, f=save_dir / "test_images.jpg")
301
+
302
+ # Log results
303
+ meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
304
+ logger.log_images(file, name="Test Examples (true-predicted)", epoch=epoch)
305
+ logger.log_model(best, epochs, metadata=meta)
306
+
307
+
308
+ def parse_opt(known=False):
309
+ parser = argparse.ArgumentParser()
310
+ parser.add_argument("--model", type=str, default="yolov5s-cls.pt", help="initial weights path")
311
+ parser.add_argument("--data", type=str, default="imagenette160", help="cifar10, cifar100, mnist, imagenet, ...")
312
+ parser.add_argument("--epochs", type=int, default=10, help="total training epochs")
313
+ parser.add_argument("--batch-size", type=int, default=64, help="total batch size for all GPUs")
314
+ parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="train, val image size (pixels)")
315
+ parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
316
+ parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"')
317
+ parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
318
+ parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
319
+ parser.add_argument("--project", default=ROOT / "runs/train-cls", help="save to project/name")
320
+ parser.add_argument("--name", default="exp", help="save to project/name")
321
+ parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
322
+ parser.add_argument("--pretrained", nargs="?", const=True, default=True, help="start from i.e. --pretrained False")
323
+ parser.add_argument("--optimizer", choices=["SGD", "Adam", "AdamW", "RMSProp"], default="Adam", help="optimizer")
324
+ parser.add_argument("--lr0", type=float, default=0.001, help="initial learning rate")
325
+ parser.add_argument("--decay", type=float, default=5e-5, help="weight decay")
326
+ parser.add_argument("--label-smoothing", type=float, default=0.1, help="Label smoothing epsilon")
327
+ parser.add_argument("--cutoff", type=int, default=None, help="Model layer cutoff index for Classify() head")
328
+ parser.add_argument("--dropout", type=float, default=None, help="Dropout (fraction)")
329
+ parser.add_argument("--verbose", action="store_true", help="Verbose mode")
330
+ parser.add_argument("--seed", type=int, default=0, help="Global training seed")
331
+ parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
332
+ return parser.parse_known_args()[0] if known else parser.parse_args()
333
+
334
+
335
+ def main(opt):
336
+ # Checks
337
+ if RANK in {-1, 0}:
338
+ print_args(vars(opt))
339
+ check_git_status()
340
+ check_requirements(ROOT / "requirements.txt")
341
+
342
+ # DDP mode
343
+ device = select_device(opt.device, batch_size=opt.batch_size)
344
+ if LOCAL_RANK != -1:
345
+ assert opt.batch_size != -1, "AutoBatch is coming soon for classification, please pass a valid --batch-size"
346
+ assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
347
+ assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
348
+ torch.cuda.set_device(LOCAL_RANK)
349
+ device = torch.device("cuda", LOCAL_RANK)
350
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
351
+
352
+ # Parameters
353
+ opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
354
+
355
+ # Train
356
+ train(opt, device)
357
+
358
+
359
+ def run(**kwargs):
360
+ # Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
361
+ opt = parse_opt(True)
362
+ for k, v in kwargs.items():
363
+ setattr(opt, k, v)
364
+ main(opt)
365
+ return opt
366
+
367
+
368
+ if __name__ == "__main__":
369
+ opt = parse_opt()
370
+ main(opt)
models/yolov5/classify/tutorial.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
models/yolov5/classify/val.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Validate a trained YOLOv5 classification model on a classification dataset.
4
+
5
+ Usage:
6
+ $ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
7
+ $ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
8
+
9
+ Usage - formats:
10
+ $ python classify/val.py --weights yolov5s-cls.pt # PyTorch
11
+ yolov5s-cls.torchscript # TorchScript
12
+ yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
13
+ yolov5s-cls_openvino_model # OpenVINO
14
+ yolov5s-cls.engine # TensorRT
15
+ yolov5s-cls.mlmodel # CoreML (macOS-only)
16
+ yolov5s-cls_saved_model # TensorFlow SavedModel
17
+ yolov5s-cls.pb # TensorFlow GraphDef
18
+ yolov5s-cls.tflite # TensorFlow Lite
19
+ yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
20
+ yolov5s-cls_paddle_model # PaddlePaddle
21
+ """
22
+
23
+ import argparse
24
+ import os
25
+ import sys
26
+ from pathlib import Path
27
+
28
+ import torch
29
+ from tqdm import tqdm
30
+
31
+ FILE = Path(__file__).resolve()
32
+ ROOT = FILE.parents[1] # YOLOv5 root directory
33
+ if str(ROOT) not in sys.path:
34
+ sys.path.append(str(ROOT)) # add ROOT to PATH
35
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
36
+
37
+ from models.common import DetectMultiBackend
38
+ from utils.dataloaders import create_classification_dataloader
39
+ from utils.general import (
40
+ LOGGER,
41
+ TQDM_BAR_FORMAT,
42
+ Profile,
43
+ check_img_size,
44
+ check_requirements,
45
+ colorstr,
46
+ increment_path,
47
+ print_args,
48
+ )
49
+ from utils.torch_utils import select_device, smart_inference_mode
50
+
51
+
52
+ @smart_inference_mode()
53
+ def run(
54
+ data=ROOT / "../datasets/mnist", # dataset dir
55
+ weights=ROOT / "yolov5s-cls.pt", # model.pt path(s)
56
+ batch_size=128, # batch size
57
+ imgsz=224, # inference size (pixels)
58
+ device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
59
+ workers=8, # max dataloader workers (per RANK in DDP mode)
60
+ verbose=False, # verbose output
61
+ project=ROOT / "runs/val-cls", # save to project/name
62
+ name="exp", # save to project/name
63
+ exist_ok=False, # existing project/name ok, do not increment
64
+ half=False, # use FP16 half-precision inference
65
+ dnn=False, # use OpenCV DNN for ONNX inference
66
+ model=None,
67
+ dataloader=None,
68
+ criterion=None,
69
+ pbar=None,
70
+ ):
71
+ # Initialize/load model and set device
72
+ training = model is not None
73
+ if training: # called by train.py
74
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
75
+ half &= device.type != "cpu" # half precision only supported on CUDA
76
+ model.half() if half else model.float()
77
+ else: # called directly
78
+ device = select_device(device, batch_size=batch_size)
79
+
80
+ # Directories
81
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
82
+ save_dir.mkdir(parents=True, exist_ok=True) # make dir
83
+
84
+ # Load model
85
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
86
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
87
+ imgsz = check_img_size(imgsz, s=stride) # check image size
88
+ half = model.fp16 # FP16 supported on limited backends with CUDA
89
+ if engine:
90
+ batch_size = model.batch_size
91
+ else:
92
+ device = model.device
93
+ if not (pt or jit):
94
+ batch_size = 1 # export.py models default to batch-size 1
95
+ LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
96
+
97
+ # Dataloader
98
+ data = Path(data)
99
+ test_dir = data / "test" if (data / "test").exists() else data / "val" # data/test or data/val
100
+ dataloader = create_classification_dataloader(
101
+ path=test_dir, imgsz=imgsz, batch_size=batch_size, augment=False, rank=-1, workers=workers
102
+ )
103
+
104
+ model.eval()
105
+ pred, targets, loss, dt = [], [], 0, (Profile(device=device), Profile(device=device), Profile(device=device))
106
+ n = len(dataloader) # number of batches
107
+ action = "validating" if dataloader.dataset.root.stem == "val" else "testing"
108
+ desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
109
+ bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
110
+ with torch.cuda.amp.autocast(enabled=device.type != "cpu"):
111
+ for images, labels in bar:
112
+ with dt[0]:
113
+ images, labels = images.to(device, non_blocking=True), labels.to(device)
114
+
115
+ with dt[1]:
116
+ y = model(images)
117
+
118
+ with dt[2]:
119
+ pred.append(y.argsort(1, descending=True)[:, :5])
120
+ targets.append(labels)
121
+ if criterion:
122
+ loss += criterion(y, labels)
123
+
124
+ loss /= n
125
+ pred, targets = torch.cat(pred), torch.cat(targets)
126
+ correct = (targets[:, None] == pred).float()
127
+ acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
128
+ top1, top5 = acc.mean(0).tolist()
129
+
130
+ if pbar:
131
+ pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
132
+ if verbose: # all classes
133
+ LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
134
+ LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
135
+ for i, c in model.names.items():
136
+ acc_i = acc[targets == i]
137
+ top1i, top5i = acc_i.mean(0).tolist()
138
+ LOGGER.info(f"{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
139
+
140
+ # Print results
141
+ t = tuple(x.t / len(dataloader.dataset.samples) * 1e3 for x in dt) # speeds per image
142
+ shape = (1, 3, imgsz, imgsz)
143
+ LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}" % t)
144
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
145
+
146
+ return top1, top5, loss
147
+
148
+
149
+ def parse_opt():
150
+ parser = argparse.ArgumentParser()
151
+ parser.add_argument("--data", type=str, default=ROOT / "../datasets/mnist", help="dataset path")
152
+ parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model.pt path(s)")
153
+ parser.add_argument("--batch-size", type=int, default=128, help="batch size")
154
+ parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="inference size (pixels)")
155
+ parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
156
+ parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
157
+ parser.add_argument("--verbose", nargs="?", const=True, default=True, help="verbose output")
158
+ parser.add_argument("--project", default=ROOT / "runs/val-cls", help="save to project/name")
159
+ parser.add_argument("--name", default="exp", help="save to project/name")
160
+ parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
161
+ parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
162
+ parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
163
+ opt = parser.parse_args()
164
+ print_args(vars(opt))
165
+ return opt
166
+
167
+
168
+ def main(opt):
169
+ check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
170
+ run(**vars(opt))
171
+
172
+
173
+ if __name__ == "__main__":
174
+ opt = parse_opt()
175
+ main(opt)
models/yolov5/data/Argoverse.yaml ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
3
+ # Example usage: python train.py --data Argoverse.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── Argoverse ← downloads here (31.3 GB)
8
+
9
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
10
+ path: ../datasets/Argoverse # dataset root dir
11
+ train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
12
+ val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
13
+ test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
14
+
15
+ # Classes
16
+ names:
17
+ 0: person
18
+ 1: bicycle
19
+ 2: car
20
+ 3: motorcycle
21
+ 4: bus
22
+ 5: truck
23
+ 6: traffic_light
24
+ 7: stop_sign
25
+
26
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
27
+ download: |
28
+ import json
29
+
30
+ from tqdm import tqdm
31
+ from utils.general import download, Path
32
+
33
+
34
+ def argoverse2yolo(set):
35
+ labels = {}
36
+ a = json.load(open(set, "rb"))
37
+ for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
38
+ img_id = annot['image_id']
39
+ img_name = a['images'][img_id]['name']
40
+ img_label_name = f'{img_name[:-3]}txt'
41
+
42
+ cls = annot['category_id'] # instance class id
43
+ x_center, y_center, width, height = annot['bbox']
44
+ x_center = (x_center + width / 2) / 1920.0 # offset and scale
45
+ y_center = (y_center + height / 2) / 1200.0 # offset and scale
46
+ width /= 1920.0 # scale
47
+ height /= 1200.0 # scale
48
+
49
+ img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
50
+ if not img_dir.exists():
51
+ img_dir.mkdir(parents=True, exist_ok=True)
52
+
53
+ k = str(img_dir / img_label_name)
54
+ if k not in labels:
55
+ labels[k] = []
56
+ labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
57
+
58
+ for k in labels:
59
+ with open(k, "w") as f:
60
+ f.writelines(labels[k])
61
+
62
+
63
+ # Download
64
+ dir = Path(yaml['path']) # dataset root dir
65
+ urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
66
+ download(urls, dir=dir, delete=False)
67
+
68
+ # Convert
69
+ annotations_dir = 'Argoverse-HD/annotations/'
70
+ (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
71
+ for d in "train.json", "val.json":
72
+ argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
models/yolov5/data/GlobalWheat2020.yaml ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
3
+ # Example usage: python train.py --data GlobalWheat2020.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── GlobalWheat2020 ← downloads here (7.0 GB)
8
+
9
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
10
+ path: ../datasets/GlobalWheat2020 # dataset root dir
11
+ train: # train images (relative to 'path') 3422 images
12
+ - images/arvalis_1
13
+ - images/arvalis_2
14
+ - images/arvalis_3
15
+ - images/ethz_1
16
+ - images/rres_1
17
+ - images/inrae_1
18
+ - images/usask_1
19
+ val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
20
+ - images/ethz_1
21
+ test: # test images (optional) 1276 images
22
+ - images/utokyo_1
23
+ - images/utokyo_2
24
+ - images/nau_1
25
+ - images/uq_1
26
+
27
+ # Classes
28
+ names:
29
+ 0: wheat_head
30
+
31
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
32
+ download: |
33
+ from utils.general import download, Path
34
+
35
+
36
+ # Download
37
+ dir = Path(yaml['path']) # dataset root dir
38
+ urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
39
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
40
+ download(urls, dir=dir)
41
+
42
+ # Make Directories
43
+ for p in 'annotations', 'images', 'labels':
44
+ (dir / p).mkdir(parents=True, exist_ok=True)
45
+
46
+ # Move
47
+ for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
48
+ 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
49
+ (dir / p).rename(dir / 'images' / p) # move to /images
50
+ f = (dir / p).with_suffix('.json') # json file
51
+ if f.exists():
52
+ f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
models/yolov5/data/ImageNet.yaml ADDED
@@ -0,0 +1,1020 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
3
+ # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
4
+ # Example usage: python classify/train.py --data imagenet
5
+ # parent
6
+ # ├── yolov5
7
+ # └── datasets
8
+ # └── imagenet ← downloads here (144 GB)
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/imagenet # dataset root dir
12
+ train: train # train images (relative to 'path') 1281167 images
13
+ val: val # val images (relative to 'path') 50000 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: tench
19
+ 1: goldfish
20
+ 2: great white shark
21
+ 3: tiger shark
22
+ 4: hammerhead shark
23
+ 5: electric ray
24
+ 6: stingray
25
+ 7: cock
26
+ 8: hen
27
+ 9: ostrich
28
+ 10: brambling
29
+ 11: goldfinch
30
+ 12: house finch
31
+ 13: junco
32
+ 14: indigo bunting
33
+ 15: American robin
34
+ 16: bulbul
35
+ 17: jay
36
+ 18: magpie
37
+ 19: chickadee
38
+ 20: American dipper
39
+ 21: kite
40
+ 22: bald eagle
41
+ 23: vulture
42
+ 24: great grey owl
43
+ 25: fire salamander
44
+ 26: smooth newt
45
+ 27: newt
46
+ 28: spotted salamander
47
+ 29: axolotl
48
+ 30: American bullfrog
49
+ 31: tree frog
50
+ 32: tailed frog
51
+ 33: loggerhead sea turtle
52
+ 34: leatherback sea turtle
53
+ 35: mud turtle
54
+ 36: terrapin
55
+ 37: box turtle
56
+ 38: banded gecko
57
+ 39: green iguana
58
+ 40: Carolina anole
59
+ 41: desert grassland whiptail lizard
60
+ 42: agama
61
+ 43: frilled-necked lizard
62
+ 44: alligator lizard
63
+ 45: Gila monster
64
+ 46: European green lizard
65
+ 47: chameleon
66
+ 48: Komodo dragon
67
+ 49: Nile crocodile
68
+ 50: American alligator
69
+ 51: triceratops
70
+ 52: worm snake
71
+ 53: ring-necked snake
72
+ 54: eastern hog-nosed snake
73
+ 55: smooth green snake
74
+ 56: kingsnake
75
+ 57: garter snake
76
+ 58: water snake
77
+ 59: vine snake
78
+ 60: night snake
79
+ 61: boa constrictor
80
+ 62: African rock python
81
+ 63: Indian cobra
82
+ 64: green mamba
83
+ 65: sea snake
84
+ 66: Saharan horned viper
85
+ 67: eastern diamondback rattlesnake
86
+ 68: sidewinder
87
+ 69: trilobite
88
+ 70: harvestman
89
+ 71: scorpion
90
+ 72: yellow garden spider
91
+ 73: barn spider
92
+ 74: European garden spider
93
+ 75: southern black widow
94
+ 76: tarantula
95
+ 77: wolf spider
96
+ 78: tick
97
+ 79: centipede
98
+ 80: black grouse
99
+ 81: ptarmigan
100
+ 82: ruffed grouse
101
+ 83: prairie grouse
102
+ 84: peacock
103
+ 85: quail
104
+ 86: partridge
105
+ 87: grey parrot
106
+ 88: macaw
107
+ 89: sulphur-crested cockatoo
108
+ 90: lorikeet
109
+ 91: coucal
110
+ 92: bee eater
111
+ 93: hornbill
112
+ 94: hummingbird
113
+ 95: jacamar
114
+ 96: toucan
115
+ 97: duck
116
+ 98: red-breasted merganser
117
+ 99: goose
118
+ 100: black swan
119
+ 101: tusker
120
+ 102: echidna
121
+ 103: platypus
122
+ 104: wallaby
123
+ 105: koala
124
+ 106: wombat
125
+ 107: jellyfish
126
+ 108: sea anemone
127
+ 109: brain coral
128
+ 110: flatworm
129
+ 111: nematode
130
+ 112: conch
131
+ 113: snail
132
+ 114: slug
133
+ 115: sea slug
134
+ 116: chiton
135
+ 117: chambered nautilus
136
+ 118: Dungeness crab
137
+ 119: rock crab
138
+ 120: fiddler crab
139
+ 121: red king crab
140
+ 122: American lobster
141
+ 123: spiny lobster
142
+ 124: crayfish
143
+ 125: hermit crab
144
+ 126: isopod
145
+ 127: white stork
146
+ 128: black stork
147
+ 129: spoonbill
148
+ 130: flamingo
149
+ 131: little blue heron
150
+ 132: great egret
151
+ 133: bittern
152
+ 134: crane (bird)
153
+ 135: limpkin
154
+ 136: common gallinule
155
+ 137: American coot
156
+ 138: bustard
157
+ 139: ruddy turnstone
158
+ 140: dunlin
159
+ 141: common redshank
160
+ 142: dowitcher
161
+ 143: oystercatcher
162
+ 144: pelican
163
+ 145: king penguin
164
+ 146: albatross
165
+ 147: grey whale
166
+ 148: killer whale
167
+ 149: dugong
168
+ 150: sea lion
169
+ 151: Chihuahua
170
+ 152: Japanese Chin
171
+ 153: Maltese
172
+ 154: Pekingese
173
+ 155: Shih Tzu
174
+ 156: King Charles Spaniel
175
+ 157: Papillon
176
+ 158: toy terrier
177
+ 159: Rhodesian Ridgeback
178
+ 160: Afghan Hound
179
+ 161: Basset Hound
180
+ 162: Beagle
181
+ 163: Bloodhound
182
+ 164: Bluetick Coonhound
183
+ 165: Black and Tan Coonhound
184
+ 166: Treeing Walker Coonhound
185
+ 167: English foxhound
186
+ 168: Redbone Coonhound
187
+ 169: borzoi
188
+ 170: Irish Wolfhound
189
+ 171: Italian Greyhound
190
+ 172: Whippet
191
+ 173: Ibizan Hound
192
+ 174: Norwegian Elkhound
193
+ 175: Otterhound
194
+ 176: Saluki
195
+ 177: Scottish Deerhound
196
+ 178: Weimaraner
197
+ 179: Staffordshire Bull Terrier
198
+ 180: American Staffordshire Terrier
199
+ 181: Bedlington Terrier
200
+ 182: Border Terrier
201
+ 183: Kerry Blue Terrier
202
+ 184: Irish Terrier
203
+ 185: Norfolk Terrier
204
+ 186: Norwich Terrier
205
+ 187: Yorkshire Terrier
206
+ 188: Wire Fox Terrier
207
+ 189: Lakeland Terrier
208
+ 190: Sealyham Terrier
209
+ 191: Airedale Terrier
210
+ 192: Cairn Terrier
211
+ 193: Australian Terrier
212
+ 194: Dandie Dinmont Terrier
213
+ 195: Boston Terrier
214
+ 196: Miniature Schnauzer
215
+ 197: Giant Schnauzer
216
+ 198: Standard Schnauzer
217
+ 199: Scottish Terrier
218
+ 200: Tibetan Terrier
219
+ 201: Australian Silky Terrier
220
+ 202: Soft-coated Wheaten Terrier
221
+ 203: West Highland White Terrier
222
+ 204: Lhasa Apso
223
+ 205: Flat-Coated Retriever
224
+ 206: Curly-coated Retriever
225
+ 207: Golden Retriever
226
+ 208: Labrador Retriever
227
+ 209: Chesapeake Bay Retriever
228
+ 210: German Shorthaired Pointer
229
+ 211: Vizsla
230
+ 212: English Setter
231
+ 213: Irish Setter
232
+ 214: Gordon Setter
233
+ 215: Brittany
234
+ 216: Clumber Spaniel
235
+ 217: English Springer Spaniel
236
+ 218: Welsh Springer Spaniel
237
+ 219: Cocker Spaniels
238
+ 220: Sussex Spaniel
239
+ 221: Irish Water Spaniel
240
+ 222: Kuvasz
241
+ 223: Schipperke
242
+ 224: Groenendael
243
+ 225: Malinois
244
+ 226: Briard
245
+ 227: Australian Kelpie
246
+ 228: Komondor
247
+ 229: Old English Sheepdog
248
+ 230: Shetland Sheepdog
249
+ 231: collie
250
+ 232: Border Collie
251
+ 233: Bouvier des Flandres
252
+ 234: Rottweiler
253
+ 235: German Shepherd Dog
254
+ 236: Dobermann
255
+ 237: Miniature Pinscher
256
+ 238: Greater Swiss Mountain Dog
257
+ 239: Bernese Mountain Dog
258
+ 240: Appenzeller Sennenhund
259
+ 241: Entlebucher Sennenhund
260
+ 242: Boxer
261
+ 243: Bullmastiff
262
+ 244: Tibetan Mastiff
263
+ 245: French Bulldog
264
+ 246: Great Dane
265
+ 247: St. Bernard
266
+ 248: husky
267
+ 249: Alaskan Malamute
268
+ 250: Siberian Husky
269
+ 251: Dalmatian
270
+ 252: Affenpinscher
271
+ 253: Basenji
272
+ 254: pug
273
+ 255: Leonberger
274
+ 256: Newfoundland
275
+ 257: Pyrenean Mountain Dog
276
+ 258: Samoyed
277
+ 259: Pomeranian
278
+ 260: Chow Chow
279
+ 261: Keeshond
280
+ 262: Griffon Bruxellois
281
+ 263: Pembroke Welsh Corgi
282
+ 264: Cardigan Welsh Corgi
283
+ 265: Toy Poodle
284
+ 266: Miniature Poodle
285
+ 267: Standard Poodle
286
+ 268: Mexican hairless dog
287
+ 269: grey wolf
288
+ 270: Alaskan tundra wolf
289
+ 271: red wolf
290
+ 272: coyote
291
+ 273: dingo
292
+ 274: dhole
293
+ 275: African wild dog
294
+ 276: hyena
295
+ 277: red fox
296
+ 278: kit fox
297
+ 279: Arctic fox
298
+ 280: grey fox
299
+ 281: tabby cat
300
+ 282: tiger cat
301
+ 283: Persian cat
302
+ 284: Siamese cat
303
+ 285: Egyptian Mau
304
+ 286: cougar
305
+ 287: lynx
306
+ 288: leopard
307
+ 289: snow leopard
308
+ 290: jaguar
309
+ 291: lion
310
+ 292: tiger
311
+ 293: cheetah
312
+ 294: brown bear
313
+ 295: American black bear
314
+ 296: polar bear
315
+ 297: sloth bear
316
+ 298: mongoose
317
+ 299: meerkat
318
+ 300: tiger beetle
319
+ 301: ladybug
320
+ 302: ground beetle
321
+ 303: longhorn beetle
322
+ 304: leaf beetle
323
+ 305: dung beetle
324
+ 306: rhinoceros beetle
325
+ 307: weevil
326
+ 308: fly
327
+ 309: bee
328
+ 310: ant
329
+ 311: grasshopper
330
+ 312: cricket
331
+ 313: stick insect
332
+ 314: cockroach
333
+ 315: mantis
334
+ 316: cicada
335
+ 317: leafhopper
336
+ 318: lacewing
337
+ 319: dragonfly
338
+ 320: damselfly
339
+ 321: red admiral
340
+ 322: ringlet
341
+ 323: monarch butterfly
342
+ 324: small white
343
+ 325: sulphur butterfly
344
+ 326: gossamer-winged butterfly
345
+ 327: starfish
346
+ 328: sea urchin
347
+ 329: sea cucumber
348
+ 330: cottontail rabbit
349
+ 331: hare
350
+ 332: Angora rabbit
351
+ 333: hamster
352
+ 334: porcupine
353
+ 335: fox squirrel
354
+ 336: marmot
355
+ 337: beaver
356
+ 338: guinea pig
357
+ 339: common sorrel
358
+ 340: zebra
359
+ 341: pig
360
+ 342: wild boar
361
+ 343: warthog
362
+ 344: hippopotamus
363
+ 345: ox
364
+ 346: water buffalo
365
+ 347: bison
366
+ 348: ram
367
+ 349: bighorn sheep
368
+ 350: Alpine ibex
369
+ 351: hartebeest
370
+ 352: impala
371
+ 353: gazelle
372
+ 354: dromedary
373
+ 355: llama
374
+ 356: weasel
375
+ 357: mink
376
+ 358: European polecat
377
+ 359: black-footed ferret
378
+ 360: otter
379
+ 361: skunk
380
+ 362: badger
381
+ 363: armadillo
382
+ 364: three-toed sloth
383
+ 365: orangutan
384
+ 366: gorilla
385
+ 367: chimpanzee
386
+ 368: gibbon
387
+ 369: siamang
388
+ 370: guenon
389
+ 371: patas monkey
390
+ 372: baboon
391
+ 373: macaque
392
+ 374: langur
393
+ 375: black-and-white colobus
394
+ 376: proboscis monkey
395
+ 377: marmoset
396
+ 378: white-headed capuchin
397
+ 379: howler monkey
398
+ 380: titi
399
+ 381: Geoffroy's spider monkey
400
+ 382: common squirrel monkey
401
+ 383: ring-tailed lemur
402
+ 384: indri
403
+ 385: Asian elephant
404
+ 386: African bush elephant
405
+ 387: red panda
406
+ 388: giant panda
407
+ 389: snoek
408
+ 390: eel
409
+ 391: coho salmon
410
+ 392: rock beauty
411
+ 393: clownfish
412
+ 394: sturgeon
413
+ 395: garfish
414
+ 396: lionfish
415
+ 397: pufferfish
416
+ 398: abacus
417
+ 399: abaya
418
+ 400: academic gown
419
+ 401: accordion
420
+ 402: acoustic guitar
421
+ 403: aircraft carrier
422
+ 404: airliner
423
+ 405: airship
424
+ 406: altar
425
+ 407: ambulance
426
+ 408: amphibious vehicle
427
+ 409: analog clock
428
+ 410: apiary
429
+ 411: apron
430
+ 412: waste container
431
+ 413: assault rifle
432
+ 414: backpack
433
+ 415: bakery
434
+ 416: balance beam
435
+ 417: balloon
436
+ 418: ballpoint pen
437
+ 419: Band-Aid
438
+ 420: banjo
439
+ 421: baluster
440
+ 422: barbell
441
+ 423: barber chair
442
+ 424: barbershop
443
+ 425: barn
444
+ 426: barometer
445
+ 427: barrel
446
+ 428: wheelbarrow
447
+ 429: baseball
448
+ 430: basketball
449
+ 431: bassinet
450
+ 432: bassoon
451
+ 433: swimming cap
452
+ 434: bath towel
453
+ 435: bathtub
454
+ 436: station wagon
455
+ 437: lighthouse
456
+ 438: beaker
457
+ 439: military cap
458
+ 440: beer bottle
459
+ 441: beer glass
460
+ 442: bell-cot
461
+ 443: bib
462
+ 444: tandem bicycle
463
+ 445: bikini
464
+ 446: ring binder
465
+ 447: binoculars
466
+ 448: birdhouse
467
+ 449: boathouse
468
+ 450: bobsleigh
469
+ 451: bolo tie
470
+ 452: poke bonnet
471
+ 453: bookcase
472
+ 454: bookstore
473
+ 455: bottle cap
474
+ 456: bow
475
+ 457: bow tie
476
+ 458: brass
477
+ 459: bra
478
+ 460: breakwater
479
+ 461: breastplate
480
+ 462: broom
481
+ 463: bucket
482
+ 464: buckle
483
+ 465: bulletproof vest
484
+ 466: high-speed train
485
+ 467: butcher shop
486
+ 468: taxicab
487
+ 469: cauldron
488
+ 470: candle
489
+ 471: cannon
490
+ 472: canoe
491
+ 473: can opener
492
+ 474: cardigan
493
+ 475: car mirror
494
+ 476: carousel
495
+ 477: tool kit
496
+ 478: carton
497
+ 479: car wheel
498
+ 480: automated teller machine
499
+ 481: cassette
500
+ 482: cassette player
501
+ 483: castle
502
+ 484: catamaran
503
+ 485: CD player
504
+ 486: cello
505
+ 487: mobile phone
506
+ 488: chain
507
+ 489: chain-link fence
508
+ 490: chain mail
509
+ 491: chainsaw
510
+ 492: chest
511
+ 493: chiffonier
512
+ 494: chime
513
+ 495: china cabinet
514
+ 496: Christmas stocking
515
+ 497: church
516
+ 498: movie theater
517
+ 499: cleaver
518
+ 500: cliff dwelling
519
+ 501: cloak
520
+ 502: clogs
521
+ 503: cocktail shaker
522
+ 504: coffee mug
523
+ 505: coffeemaker
524
+ 506: coil
525
+ 507: combination lock
526
+ 508: computer keyboard
527
+ 509: confectionery store
528
+ 510: container ship
529
+ 511: convertible
530
+ 512: corkscrew
531
+ 513: cornet
532
+ 514: cowboy boot
533
+ 515: cowboy hat
534
+ 516: cradle
535
+ 517: crane (machine)
536
+ 518: crash helmet
537
+ 519: crate
538
+ 520: infant bed
539
+ 521: Crock Pot
540
+ 522: croquet ball
541
+ 523: crutch
542
+ 524: cuirass
543
+ 525: dam
544
+ 526: desk
545
+ 527: desktop computer
546
+ 528: rotary dial telephone
547
+ 529: diaper
548
+ 530: digital clock
549
+ 531: digital watch
550
+ 532: dining table
551
+ 533: dishcloth
552
+ 534: dishwasher
553
+ 535: disc brake
554
+ 536: dock
555
+ 537: dog sled
556
+ 538: dome
557
+ 539: doormat
558
+ 540: drilling rig
559
+ 541: drum
560
+ 542: drumstick
561
+ 543: dumbbell
562
+ 544: Dutch oven
563
+ 545: electric fan
564
+ 546: electric guitar
565
+ 547: electric locomotive
566
+ 548: entertainment center
567
+ 549: envelope
568
+ 550: espresso machine
569
+ 551: face powder
570
+ 552: feather boa
571
+ 553: filing cabinet
572
+ 554: fireboat
573
+ 555: fire engine
574
+ 556: fire screen sheet
575
+ 557: flagpole
576
+ 558: flute
577
+ 559: folding chair
578
+ 560: football helmet
579
+ 561: forklift
580
+ 562: fountain
581
+ 563: fountain pen
582
+ 564: four-poster bed
583
+ 565: freight car
584
+ 566: French horn
585
+ 567: frying pan
586
+ 568: fur coat
587
+ 569: garbage truck
588
+ 570: gas mask
589
+ 571: gas pump
590
+ 572: goblet
591
+ 573: go-kart
592
+ 574: golf ball
593
+ 575: golf cart
594
+ 576: gondola
595
+ 577: gong
596
+ 578: gown
597
+ 579: grand piano
598
+ 580: greenhouse
599
+ 581: grille
600
+ 582: grocery store
601
+ 583: guillotine
602
+ 584: barrette
603
+ 585: hair spray
604
+ 586: half-track
605
+ 587: hammer
606
+ 588: hamper
607
+ 589: hair dryer
608
+ 590: hand-held computer
609
+ 591: handkerchief
610
+ 592: hard disk drive
611
+ 593: harmonica
612
+ 594: harp
613
+ 595: harvester
614
+ 596: hatchet
615
+ 597: holster
616
+ 598: home theater
617
+ 599: honeycomb
618
+ 600: hook
619
+ 601: hoop skirt
620
+ 602: horizontal bar
621
+ 603: horse-drawn vehicle
622
+ 604: hourglass
623
+ 605: iPod
624
+ 606: clothes iron
625
+ 607: jack-o'-lantern
626
+ 608: jeans
627
+ 609: jeep
628
+ 610: T-shirt
629
+ 611: jigsaw puzzle
630
+ 612: pulled rickshaw
631
+ 613: joystick
632
+ 614: kimono
633
+ 615: knee pad
634
+ 616: knot
635
+ 617: lab coat
636
+ 618: ladle
637
+ 619: lampshade
638
+ 620: laptop computer
639
+ 621: lawn mower
640
+ 622: lens cap
641
+ 623: paper knife
642
+ 624: library
643
+ 625: lifeboat
644
+ 626: lighter
645
+ 627: limousine
646
+ 628: ocean liner
647
+ 629: lipstick
648
+ 630: slip-on shoe
649
+ 631: lotion
650
+ 632: speaker
651
+ 633: loupe
652
+ 634: sawmill
653
+ 635: magnetic compass
654
+ 636: mail bag
655
+ 637: mailbox
656
+ 638: tights
657
+ 639: tank suit
658
+ 640: manhole cover
659
+ 641: maraca
660
+ 642: marimba
661
+ 643: mask
662
+ 644: match
663
+ 645: maypole
664
+ 646: maze
665
+ 647: measuring cup
666
+ 648: medicine chest
667
+ 649: megalith
668
+ 650: microphone
669
+ 651: microwave oven
670
+ 652: military uniform
671
+ 653: milk can
672
+ 654: minibus
673
+ 655: miniskirt
674
+ 656: minivan
675
+ 657: missile
676
+ 658: mitten
677
+ 659: mixing bowl
678
+ 660: mobile home
679
+ 661: Model T
680
+ 662: modem
681
+ 663: monastery
682
+ 664: monitor
683
+ 665: moped
684
+ 666: mortar
685
+ 667: square academic cap
686
+ 668: mosque
687
+ 669: mosquito net
688
+ 670: scooter
689
+ 671: mountain bike
690
+ 672: tent
691
+ 673: computer mouse
692
+ 674: mousetrap
693
+ 675: moving van
694
+ 676: muzzle
695
+ 677: nail
696
+ 678: neck brace
697
+ 679: necklace
698
+ 680: nipple
699
+ 681: notebook computer
700
+ 682: obelisk
701
+ 683: oboe
702
+ 684: ocarina
703
+ 685: odometer
704
+ 686: oil filter
705
+ 687: organ
706
+ 688: oscilloscope
707
+ 689: overskirt
708
+ 690: bullock cart
709
+ 691: oxygen mask
710
+ 692: packet
711
+ 693: paddle
712
+ 694: paddle wheel
713
+ 695: padlock
714
+ 696: paintbrush
715
+ 697: pajamas
716
+ 698: palace
717
+ 699: pan flute
718
+ 700: paper towel
719
+ 701: parachute
720
+ 702: parallel bars
721
+ 703: park bench
722
+ 704: parking meter
723
+ 705: passenger car
724
+ 706: patio
725
+ 707: payphone
726
+ 708: pedestal
727
+ 709: pencil case
728
+ 710: pencil sharpener
729
+ 711: perfume
730
+ 712: Petri dish
731
+ 713: photocopier
732
+ 714: plectrum
733
+ 715: Pickelhaube
734
+ 716: picket fence
735
+ 717: pickup truck
736
+ 718: pier
737
+ 719: piggy bank
738
+ 720: pill bottle
739
+ 721: pillow
740
+ 722: ping-pong ball
741
+ 723: pinwheel
742
+ 724: pirate ship
743
+ 725: pitcher
744
+ 726: hand plane
745
+ 727: planetarium
746
+ 728: plastic bag
747
+ 729: plate rack
748
+ 730: plow
749
+ 731: plunger
750
+ 732: Polaroid camera
751
+ 733: pole
752
+ 734: police van
753
+ 735: poncho
754
+ 736: billiard table
755
+ 737: soda bottle
756
+ 738: pot
757
+ 739: potter's wheel
758
+ 740: power drill
759
+ 741: prayer rug
760
+ 742: printer
761
+ 743: prison
762
+ 744: projectile
763
+ 745: projector
764
+ 746: hockey puck
765
+ 747: punching bag
766
+ 748: purse
767
+ 749: quill
768
+ 750: quilt
769
+ 751: race car
770
+ 752: racket
771
+ 753: radiator
772
+ 754: radio
773
+ 755: radio telescope
774
+ 756: rain barrel
775
+ 757: recreational vehicle
776
+ 758: reel
777
+ 759: reflex camera
778
+ 760: refrigerator
779
+ 761: remote control
780
+ 762: restaurant
781
+ 763: revolver
782
+ 764: rifle
783
+ 765: rocking chair
784
+ 766: rotisserie
785
+ 767: eraser
786
+ 768: rugby ball
787
+ 769: ruler
788
+ 770: running shoe
789
+ 771: safe
790
+ 772: safety pin
791
+ 773: salt shaker
792
+ 774: sandal
793
+ 775: sarong
794
+ 776: saxophone
795
+ 777: scabbard
796
+ 778: weighing scale
797
+ 779: school bus
798
+ 780: schooner
799
+ 781: scoreboard
800
+ 782: CRT screen
801
+ 783: screw
802
+ 784: screwdriver
803
+ 785: seat belt
804
+ 786: sewing machine
805
+ 787: shield
806
+ 788: shoe store
807
+ 789: shoji
808
+ 790: shopping basket
809
+ 791: shopping cart
810
+ 792: shovel
811
+ 793: shower cap
812
+ 794: shower curtain
813
+ 795: ski
814
+ 796: ski mask
815
+ 797: sleeping bag
816
+ 798: slide rule
817
+ 799: sliding door
818
+ 800: slot machine
819
+ 801: snorkel
820
+ 802: snowmobile
821
+ 803: snowplow
822
+ 804: soap dispenser
823
+ 805: soccer ball
824
+ 806: sock
825
+ 807: solar thermal collector
826
+ 808: sombrero
827
+ 809: soup bowl
828
+ 810: space bar
829
+ 811: space heater
830
+ 812: space shuttle
831
+ 813: spatula
832
+ 814: motorboat
833
+ 815: spider web
834
+ 816: spindle
835
+ 817: sports car
836
+ 818: spotlight
837
+ 819: stage
838
+ 820: steam locomotive
839
+ 821: through arch bridge
840
+ 822: steel drum
841
+ 823: stethoscope
842
+ 824: scarf
843
+ 825: stone wall
844
+ 826: stopwatch
845
+ 827: stove
846
+ 828: strainer
847
+ 829: tram
848
+ 830: stretcher
849
+ 831: couch
850
+ 832: stupa
851
+ 833: submarine
852
+ 834: suit
853
+ 835: sundial
854
+ 836: sunglass
855
+ 837: sunglasses
856
+ 838: sunscreen
857
+ 839: suspension bridge
858
+ 840: mop
859
+ 841: sweatshirt
860
+ 842: swimsuit
861
+ 843: swing
862
+ 844: switch
863
+ 845: syringe
864
+ 846: table lamp
865
+ 847: tank
866
+ 848: tape player
867
+ 849: teapot
868
+ 850: teddy bear
869
+ 851: television
870
+ 852: tennis ball
871
+ 853: thatched roof
872
+ 854: front curtain
873
+ 855: thimble
874
+ 856: threshing machine
875
+ 857: throne
876
+ 858: tile roof
877
+ 859: toaster
878
+ 860: tobacco shop
879
+ 861: toilet seat
880
+ 862: torch
881
+ 863: totem pole
882
+ 864: tow truck
883
+ 865: toy store
884
+ 866: tractor
885
+ 867: semi-trailer truck
886
+ 868: tray
887
+ 869: trench coat
888
+ 870: tricycle
889
+ 871: trimaran
890
+ 872: tripod
891
+ 873: triumphal arch
892
+ 874: trolleybus
893
+ 875: trombone
894
+ 876: tub
895
+ 877: turnstile
896
+ 878: typewriter keyboard
897
+ 879: umbrella
898
+ 880: unicycle
899
+ 881: upright piano
900
+ 882: vacuum cleaner
901
+ 883: vase
902
+ 884: vault
903
+ 885: velvet
904
+ 886: vending machine
905
+ 887: vestment
906
+ 888: viaduct
907
+ 889: violin
908
+ 890: volleyball
909
+ 891: waffle iron
910
+ 892: wall clock
911
+ 893: wallet
912
+ 894: wardrobe
913
+ 895: military aircraft
914
+ 896: sink
915
+ 897: washing machine
916
+ 898: water bottle
917
+ 899: water jug
918
+ 900: water tower
919
+ 901: whiskey jug
920
+ 902: whistle
921
+ 903: wig
922
+ 904: window screen
923
+ 905: window shade
924
+ 906: Windsor tie
925
+ 907: wine bottle
926
+ 908: wing
927
+ 909: wok
928
+ 910: wooden spoon
929
+ 911: wool
930
+ 912: split-rail fence
931
+ 913: shipwreck
932
+ 914: yawl
933
+ 915: yurt
934
+ 916: website
935
+ 917: comic book
936
+ 918: crossword
937
+ 919: traffic sign
938
+ 920: traffic light
939
+ 921: dust jacket
940
+ 922: menu
941
+ 923: plate
942
+ 924: guacamole
943
+ 925: consomme
944
+ 926: hot pot
945
+ 927: trifle
946
+ 928: ice cream
947
+ 929: ice pop
948
+ 930: baguette
949
+ 931: bagel
950
+ 932: pretzel
951
+ 933: cheeseburger
952
+ 934: hot dog
953
+ 935: mashed potato
954
+ 936: cabbage
955
+ 937: broccoli
956
+ 938: cauliflower
957
+ 939: zucchini
958
+ 940: spaghetti squash
959
+ 941: acorn squash
960
+ 942: butternut squash
961
+ 943: cucumber
962
+ 944: artichoke
963
+ 945: bell pepper
964
+ 946: cardoon
965
+ 947: mushroom
966
+ 948: Granny Smith
967
+ 949: strawberry
968
+ 950: orange
969
+ 951: lemon
970
+ 952: fig
971
+ 953: pineapple
972
+ 954: banana
973
+ 955: jackfruit
974
+ 956: custard apple
975
+ 957: pomegranate
976
+ 958: hay
977
+ 959: carbonara
978
+ 960: chocolate syrup
979
+ 961: dough
980
+ 962: meatloaf
981
+ 963: pizza
982
+ 964: pot pie
983
+ 965: burrito
984
+ 966: red wine
985
+ 967: espresso
986
+ 968: cup
987
+ 969: eggnog
988
+ 970: alp
989
+ 971: bubble
990
+ 972: cliff
991
+ 973: coral reef
992
+ 974: geyser
993
+ 975: lakeshore
994
+ 976: promontory
995
+ 977: shoal
996
+ 978: seashore
997
+ 979: valley
998
+ 980: volcano
999
+ 981: baseball player
1000
+ 982: bridegroom
1001
+ 983: scuba diver
1002
+ 984: rapeseed
1003
+ 985: daisy
1004
+ 986: yellow lady's slipper
1005
+ 987: corn
1006
+ 988: acorn
1007
+ 989: rose hip
1008
+ 990: horse chestnut seed
1009
+ 991: coral fungus
1010
+ 992: agaric
1011
+ 993: gyromitra
1012
+ 994: stinkhorn mushroom
1013
+ 995: earth star
1014
+ 996: hen-of-the-woods
1015
+ 997: bolete
1016
+ 998: ear
1017
+ 999: toilet paper
1018
+
1019
+ # Download script/URL (optional)
1020
+ download: data/scripts/get_imagenet.sh
models/yolov5/data/ImageNet10.yaml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
3
+ # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
4
+ # Example usage: python classify/train.py --data imagenet
5
+ # parent
6
+ # ├── yolov5
7
+ # └── datasets
8
+ # └── imagenet10 ← downloads here
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/imagenet10 # dataset root dir
12
+ train: train # train images (relative to 'path') 1281167 images
13
+ val: val # val images (relative to 'path') 50000 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: tench
19
+ 1: goldfish
20
+ 2: great white shark
21
+ 3: tiger shark
22
+ 4: hammerhead shark
23
+ 5: electric ray
24
+ 6: stingray
25
+ 7: cock
26
+ 8: hen
27
+ 9: ostrich
28
+
29
+ # Download script/URL (optional)
30
+ download: data/scripts/get_imagenet10.sh
models/yolov5/data/ImageNet100.yaml ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
3
+ # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
4
+ # Example usage: python classify/train.py --data imagenet
5
+ # parent
6
+ # ├── yolov5
7
+ # └── datasets
8
+ # └── imagenet100 ← downloads here
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/imagenet100 # dataset root dir
12
+ train: train # train images (relative to 'path') 1281167 images
13
+ val: val # val images (relative to 'path') 50000 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: tench
19
+ 1: goldfish
20
+ 2: great white shark
21
+ 3: tiger shark
22
+ 4: hammerhead shark
23
+ 5: electric ray
24
+ 6: stingray
25
+ 7: cock
26
+ 8: hen
27
+ 9: ostrich
28
+ 10: brambling
29
+ 11: goldfinch
30
+ 12: house finch
31
+ 13: junco
32
+ 14: indigo bunting
33
+ 15: American robin
34
+ 16: bulbul
35
+ 17: jay
36
+ 18: magpie
37
+ 19: chickadee
38
+ 20: American dipper
39
+ 21: kite
40
+ 22: bald eagle
41
+ 23: vulture
42
+ 24: great grey owl
43
+ 25: fire salamander
44
+ 26: smooth newt
45
+ 27: newt
46
+ 28: spotted salamander
47
+ 29: axolotl
48
+ 30: American bullfrog
49
+ 31: tree frog
50
+ 32: tailed frog
51
+ 33: loggerhead sea turtle
52
+ 34: leatherback sea turtle
53
+ 35: mud turtle
54
+ 36: terrapin
55
+ 37: box turtle
56
+ 38: banded gecko
57
+ 39: green iguana
58
+ 40: Carolina anole
59
+ 41: desert grassland whiptail lizard
60
+ 42: agama
61
+ 43: frilled-necked lizard
62
+ 44: alligator lizard
63
+ 45: Gila monster
64
+ 46: European green lizard
65
+ 47: chameleon
66
+ 48: Komodo dragon
67
+ 49: Nile crocodile
68
+ 50: American alligator
69
+ 51: triceratops
70
+ 52: worm snake
71
+ 53: ring-necked snake
72
+ 54: eastern hog-nosed snake
73
+ 55: smooth green snake
74
+ 56: kingsnake
75
+ 57: garter snake
76
+ 58: water snake
77
+ 59: vine snake
78
+ 60: night snake
79
+ 61: boa constrictor
80
+ 62: African rock python
81
+ 63: Indian cobra
82
+ 64: green mamba
83
+ 65: sea snake
84
+ 66: Saharan horned viper
85
+ 67: eastern diamondback rattlesnake
86
+ 68: sidewinder
87
+ 69: trilobite
88
+ 70: harvestman
89
+ 71: scorpion
90
+ 72: yellow garden spider
91
+ 73: barn spider
92
+ 74: European garden spider
93
+ 75: southern black widow
94
+ 76: tarantula
95
+ 77: wolf spider
96
+ 78: tick
97
+ 79: centipede
98
+ 80: black grouse
99
+ 81: ptarmigan
100
+ 82: ruffed grouse
101
+ 83: prairie grouse
102
+ 84: peacock
103
+ 85: quail
104
+ 86: partridge
105
+ 87: grey parrot
106
+ 88: macaw
107
+ 89: sulphur-crested cockatoo
108
+ 90: lorikeet
109
+ 91: coucal
110
+ 92: bee eater
111
+ 93: hornbill
112
+ 94: hummingbird
113
+ 95: jacamar
114
+ 96: toucan
115
+ 97: duck
116
+ 98: red-breasted merganser
117
+ 99: goose
118
+ # Download script/URL (optional)
119
+ download: data/scripts/get_imagenet100.sh
models/yolov5/data/ImageNet1000.yaml ADDED
@@ -0,0 +1,1020 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
3
+ # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
4
+ # Example usage: python classify/train.py --data imagenet
5
+ # parent
6
+ # ├── yolov5
7
+ # └── datasets
8
+ # └── imagenet100 ← downloads here
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/imagenet1000 # dataset root dir
12
+ train: train # train images (relative to 'path') 1281167 images
13
+ val: val # val images (relative to 'path') 50000 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: tench
19
+ 1: goldfish
20
+ 2: great white shark
21
+ 3: tiger shark
22
+ 4: hammerhead shark
23
+ 5: electric ray
24
+ 6: stingray
25
+ 7: cock
26
+ 8: hen
27
+ 9: ostrich
28
+ 10: brambling
29
+ 11: goldfinch
30
+ 12: house finch
31
+ 13: junco
32
+ 14: indigo bunting
33
+ 15: American robin
34
+ 16: bulbul
35
+ 17: jay
36
+ 18: magpie
37
+ 19: chickadee
38
+ 20: American dipper
39
+ 21: kite
40
+ 22: bald eagle
41
+ 23: vulture
42
+ 24: great grey owl
43
+ 25: fire salamander
44
+ 26: smooth newt
45
+ 27: newt
46
+ 28: spotted salamander
47
+ 29: axolotl
48
+ 30: American bullfrog
49
+ 31: tree frog
50
+ 32: tailed frog
51
+ 33: loggerhead sea turtle
52
+ 34: leatherback sea turtle
53
+ 35: mud turtle
54
+ 36: terrapin
55
+ 37: box turtle
56
+ 38: banded gecko
57
+ 39: green iguana
58
+ 40: Carolina anole
59
+ 41: desert grassland whiptail lizard
60
+ 42: agama
61
+ 43: frilled-necked lizard
62
+ 44: alligator lizard
63
+ 45: Gila monster
64
+ 46: European green lizard
65
+ 47: chameleon
66
+ 48: Komodo dragon
67
+ 49: Nile crocodile
68
+ 50: American alligator
69
+ 51: triceratops
70
+ 52: worm snake
71
+ 53: ring-necked snake
72
+ 54: eastern hog-nosed snake
73
+ 55: smooth green snake
74
+ 56: kingsnake
75
+ 57: garter snake
76
+ 58: water snake
77
+ 59: vine snake
78
+ 60: night snake
79
+ 61: boa constrictor
80
+ 62: African rock python
81
+ 63: Indian cobra
82
+ 64: green mamba
83
+ 65: sea snake
84
+ 66: Saharan horned viper
85
+ 67: eastern diamondback rattlesnake
86
+ 68: sidewinder
87
+ 69: trilobite
88
+ 70: harvestman
89
+ 71: scorpion
90
+ 72: yellow garden spider
91
+ 73: barn spider
92
+ 74: European garden spider
93
+ 75: southern black widow
94
+ 76: tarantula
95
+ 77: wolf spider
96
+ 78: tick
97
+ 79: centipede
98
+ 80: black grouse
99
+ 81: ptarmigan
100
+ 82: ruffed grouse
101
+ 83: prairie grouse
102
+ 84: peacock
103
+ 85: quail
104
+ 86: partridge
105
+ 87: grey parrot
106
+ 88: macaw
107
+ 89: sulphur-crested cockatoo
108
+ 90: lorikeet
109
+ 91: coucal
110
+ 92: bee eater
111
+ 93: hornbill
112
+ 94: hummingbird
113
+ 95: jacamar
114
+ 96: toucan
115
+ 97: duck
116
+ 98: red-breasted merganser
117
+ 99: goose
118
+ 100: black swan
119
+ 101: tusker
120
+ 102: echidna
121
+ 103: platypus
122
+ 104: wallaby
123
+ 105: koala
124
+ 106: wombat
125
+ 107: jellyfish
126
+ 108: sea anemone
127
+ 109: brain coral
128
+ 110: flatworm
129
+ 111: nematode
130
+ 112: conch
131
+ 113: snail
132
+ 114: slug
133
+ 115: sea slug
134
+ 116: chiton
135
+ 117: chambered nautilus
136
+ 118: Dungeness crab
137
+ 119: rock crab
138
+ 120: fiddler crab
139
+ 121: red king crab
140
+ 122: American lobster
141
+ 123: spiny lobster
142
+ 124: crayfish
143
+ 125: hermit crab
144
+ 126: isopod
145
+ 127: white stork
146
+ 128: black stork
147
+ 129: spoonbill
148
+ 130: flamingo
149
+ 131: little blue heron
150
+ 132: great egret
151
+ 133: bittern
152
+ 134: crane (bird)
153
+ 135: limpkin
154
+ 136: common gallinule
155
+ 137: American coot
156
+ 138: bustard
157
+ 139: ruddy turnstone
158
+ 140: dunlin
159
+ 141: common redshank
160
+ 142: dowitcher
161
+ 143: oystercatcher
162
+ 144: pelican
163
+ 145: king penguin
164
+ 146: albatross
165
+ 147: grey whale
166
+ 148: killer whale
167
+ 149: dugong
168
+ 150: sea lion
169
+ 151: Chihuahua
170
+ 152: Japanese Chin
171
+ 153: Maltese
172
+ 154: Pekingese
173
+ 155: Shih Tzu
174
+ 156: King Charles Spaniel
175
+ 157: Papillon
176
+ 158: toy terrier
177
+ 159: Rhodesian Ridgeback
178
+ 160: Afghan Hound
179
+ 161: Basset Hound
180
+ 162: Beagle
181
+ 163: Bloodhound
182
+ 164: Bluetick Coonhound
183
+ 165: Black and Tan Coonhound
184
+ 166: Treeing Walker Coonhound
185
+ 167: English foxhound
186
+ 168: Redbone Coonhound
187
+ 169: borzoi
188
+ 170: Irish Wolfhound
189
+ 171: Italian Greyhound
190
+ 172: Whippet
191
+ 173: Ibizan Hound
192
+ 174: Norwegian Elkhound
193
+ 175: Otterhound
194
+ 176: Saluki
195
+ 177: Scottish Deerhound
196
+ 178: Weimaraner
197
+ 179: Staffordshire Bull Terrier
198
+ 180: American Staffordshire Terrier
199
+ 181: Bedlington Terrier
200
+ 182: Border Terrier
201
+ 183: Kerry Blue Terrier
202
+ 184: Irish Terrier
203
+ 185: Norfolk Terrier
204
+ 186: Norwich Terrier
205
+ 187: Yorkshire Terrier
206
+ 188: Wire Fox Terrier
207
+ 189: Lakeland Terrier
208
+ 190: Sealyham Terrier
209
+ 191: Airedale Terrier
210
+ 192: Cairn Terrier
211
+ 193: Australian Terrier
212
+ 194: Dandie Dinmont Terrier
213
+ 195: Boston Terrier
214
+ 196: Miniature Schnauzer
215
+ 197: Giant Schnauzer
216
+ 198: Standard Schnauzer
217
+ 199: Scottish Terrier
218
+ 200: Tibetan Terrier
219
+ 201: Australian Silky Terrier
220
+ 202: Soft-coated Wheaten Terrier
221
+ 203: West Highland White Terrier
222
+ 204: Lhasa Apso
223
+ 205: Flat-Coated Retriever
224
+ 206: Curly-coated Retriever
225
+ 207: Golden Retriever
226
+ 208: Labrador Retriever
227
+ 209: Chesapeake Bay Retriever
228
+ 210: German Shorthaired Pointer
229
+ 211: Vizsla
230
+ 212: English Setter
231
+ 213: Irish Setter
232
+ 214: Gordon Setter
233
+ 215: Brittany
234
+ 216: Clumber Spaniel
235
+ 217: English Springer Spaniel
236
+ 218: Welsh Springer Spaniel
237
+ 219: Cocker Spaniels
238
+ 220: Sussex Spaniel
239
+ 221: Irish Water Spaniel
240
+ 222: Kuvasz
241
+ 223: Schipperke
242
+ 224: Groenendael
243
+ 225: Malinois
244
+ 226: Briard
245
+ 227: Australian Kelpie
246
+ 228: Komondor
247
+ 229: Old English Sheepdog
248
+ 230: Shetland Sheepdog
249
+ 231: collie
250
+ 232: Border Collie
251
+ 233: Bouvier des Flandres
252
+ 234: Rottweiler
253
+ 235: German Shepherd Dog
254
+ 236: Dobermann
255
+ 237: Miniature Pinscher
256
+ 238: Greater Swiss Mountain Dog
257
+ 239: Bernese Mountain Dog
258
+ 240: Appenzeller Sennenhund
259
+ 241: Entlebucher Sennenhund
260
+ 242: Boxer
261
+ 243: Bullmastiff
262
+ 244: Tibetan Mastiff
263
+ 245: French Bulldog
264
+ 246: Great Dane
265
+ 247: St. Bernard
266
+ 248: husky
267
+ 249: Alaskan Malamute
268
+ 250: Siberian Husky
269
+ 251: Dalmatian
270
+ 252: Affenpinscher
271
+ 253: Basenji
272
+ 254: pug
273
+ 255: Leonberger
274
+ 256: Newfoundland
275
+ 257: Pyrenean Mountain Dog
276
+ 258: Samoyed
277
+ 259: Pomeranian
278
+ 260: Chow Chow
279
+ 261: Keeshond
280
+ 262: Griffon Bruxellois
281
+ 263: Pembroke Welsh Corgi
282
+ 264: Cardigan Welsh Corgi
283
+ 265: Toy Poodle
284
+ 266: Miniature Poodle
285
+ 267: Standard Poodle
286
+ 268: Mexican hairless dog
287
+ 269: grey wolf
288
+ 270: Alaskan tundra wolf
289
+ 271: red wolf
290
+ 272: coyote
291
+ 273: dingo
292
+ 274: dhole
293
+ 275: African wild dog
294
+ 276: hyena
295
+ 277: red fox
296
+ 278: kit fox
297
+ 279: Arctic fox
298
+ 280: grey fox
299
+ 281: tabby cat
300
+ 282: tiger cat
301
+ 283: Persian cat
302
+ 284: Siamese cat
303
+ 285: Egyptian Mau
304
+ 286: cougar
305
+ 287: lynx
306
+ 288: leopard
307
+ 289: snow leopard
308
+ 290: jaguar
309
+ 291: lion
310
+ 292: tiger
311
+ 293: cheetah
312
+ 294: brown bear
313
+ 295: American black bear
314
+ 296: polar bear
315
+ 297: sloth bear
316
+ 298: mongoose
317
+ 299: meerkat
318
+ 300: tiger beetle
319
+ 301: ladybug
320
+ 302: ground beetle
321
+ 303: longhorn beetle
322
+ 304: leaf beetle
323
+ 305: dung beetle
324
+ 306: rhinoceros beetle
325
+ 307: weevil
326
+ 308: fly
327
+ 309: bee
328
+ 310: ant
329
+ 311: grasshopper
330
+ 312: cricket
331
+ 313: stick insect
332
+ 314: cockroach
333
+ 315: mantis
334
+ 316: cicada
335
+ 317: leafhopper
336
+ 318: lacewing
337
+ 319: dragonfly
338
+ 320: damselfly
339
+ 321: red admiral
340
+ 322: ringlet
341
+ 323: monarch butterfly
342
+ 324: small white
343
+ 325: sulphur butterfly
344
+ 326: gossamer-winged butterfly
345
+ 327: starfish
346
+ 328: sea urchin
347
+ 329: sea cucumber
348
+ 330: cottontail rabbit
349
+ 331: hare
350
+ 332: Angora rabbit
351
+ 333: hamster
352
+ 334: porcupine
353
+ 335: fox squirrel
354
+ 336: marmot
355
+ 337: beaver
356
+ 338: guinea pig
357
+ 339: common sorrel
358
+ 340: zebra
359
+ 341: pig
360
+ 342: wild boar
361
+ 343: warthog
362
+ 344: hippopotamus
363
+ 345: ox
364
+ 346: water buffalo
365
+ 347: bison
366
+ 348: ram
367
+ 349: bighorn sheep
368
+ 350: Alpine ibex
369
+ 351: hartebeest
370
+ 352: impala
371
+ 353: gazelle
372
+ 354: dromedary
373
+ 355: llama
374
+ 356: weasel
375
+ 357: mink
376
+ 358: European polecat
377
+ 359: black-footed ferret
378
+ 360: otter
379
+ 361: skunk
380
+ 362: badger
381
+ 363: armadillo
382
+ 364: three-toed sloth
383
+ 365: orangutan
384
+ 366: gorilla
385
+ 367: chimpanzee
386
+ 368: gibbon
387
+ 369: siamang
388
+ 370: guenon
389
+ 371: patas monkey
390
+ 372: baboon
391
+ 373: macaque
392
+ 374: langur
393
+ 375: black-and-white colobus
394
+ 376: proboscis monkey
395
+ 377: marmoset
396
+ 378: white-headed capuchin
397
+ 379: howler monkey
398
+ 380: titi
399
+ 381: Geoffroy's spider monkey
400
+ 382: common squirrel monkey
401
+ 383: ring-tailed lemur
402
+ 384: indri
403
+ 385: Asian elephant
404
+ 386: African bush elephant
405
+ 387: red panda
406
+ 388: giant panda
407
+ 389: snoek
408
+ 390: eel
409
+ 391: coho salmon
410
+ 392: rock beauty
411
+ 393: clownfish
412
+ 394: sturgeon
413
+ 395: garfish
414
+ 396: lionfish
415
+ 397: pufferfish
416
+ 398: abacus
417
+ 399: abaya
418
+ 400: academic gown
419
+ 401: accordion
420
+ 402: acoustic guitar
421
+ 403: aircraft carrier
422
+ 404: airliner
423
+ 405: airship
424
+ 406: altar
425
+ 407: ambulance
426
+ 408: amphibious vehicle
427
+ 409: analog clock
428
+ 410: apiary
429
+ 411: apron
430
+ 412: waste container
431
+ 413: assault rifle
432
+ 414: backpack
433
+ 415: bakery
434
+ 416: balance beam
435
+ 417: balloon
436
+ 418: ballpoint pen
437
+ 419: Band-Aid
438
+ 420: banjo
439
+ 421: baluster
440
+ 422: barbell
441
+ 423: barber chair
442
+ 424: barbershop
443
+ 425: barn
444
+ 426: barometer
445
+ 427: barrel
446
+ 428: wheelbarrow
447
+ 429: baseball
448
+ 430: basketball
449
+ 431: bassinet
450
+ 432: bassoon
451
+ 433: swimming cap
452
+ 434: bath towel
453
+ 435: bathtub
454
+ 436: station wagon
455
+ 437: lighthouse
456
+ 438: beaker
457
+ 439: military cap
458
+ 440: beer bottle
459
+ 441: beer glass
460
+ 442: bell-cot
461
+ 443: bib
462
+ 444: tandem bicycle
463
+ 445: bikini
464
+ 446: ring binder
465
+ 447: binoculars
466
+ 448: birdhouse
467
+ 449: boathouse
468
+ 450: bobsleigh
469
+ 451: bolo tie
470
+ 452: poke bonnet
471
+ 453: bookcase
472
+ 454: bookstore
473
+ 455: bottle cap
474
+ 456: bow
475
+ 457: bow tie
476
+ 458: brass
477
+ 459: bra
478
+ 460: breakwater
479
+ 461: breastplate
480
+ 462: broom
481
+ 463: bucket
482
+ 464: buckle
483
+ 465: bulletproof vest
484
+ 466: high-speed train
485
+ 467: butcher shop
486
+ 468: taxicab
487
+ 469: cauldron
488
+ 470: candle
489
+ 471: cannon
490
+ 472: canoe
491
+ 473: can opener
492
+ 474: cardigan
493
+ 475: car mirror
494
+ 476: carousel
495
+ 477: tool kit
496
+ 478: carton
497
+ 479: car wheel
498
+ 480: automated teller machine
499
+ 481: cassette
500
+ 482: cassette player
501
+ 483: castle
502
+ 484: catamaran
503
+ 485: CD player
504
+ 486: cello
505
+ 487: mobile phone
506
+ 488: chain
507
+ 489: chain-link fence
508
+ 490: chain mail
509
+ 491: chainsaw
510
+ 492: chest
511
+ 493: chiffonier
512
+ 494: chime
513
+ 495: china cabinet
514
+ 496: Christmas stocking
515
+ 497: church
516
+ 498: movie theater
517
+ 499: cleaver
518
+ 500: cliff dwelling
519
+ 501: cloak
520
+ 502: clogs
521
+ 503: cocktail shaker
522
+ 504: coffee mug
523
+ 505: coffeemaker
524
+ 506: coil
525
+ 507: combination lock
526
+ 508: computer keyboard
527
+ 509: confectionery store
528
+ 510: container ship
529
+ 511: convertible
530
+ 512: corkscrew
531
+ 513: cornet
532
+ 514: cowboy boot
533
+ 515: cowboy hat
534
+ 516: cradle
535
+ 517: crane (machine)
536
+ 518: crash helmet
537
+ 519: crate
538
+ 520: infant bed
539
+ 521: Crock Pot
540
+ 522: croquet ball
541
+ 523: crutch
542
+ 524: cuirass
543
+ 525: dam
544
+ 526: desk
545
+ 527: desktop computer
546
+ 528: rotary dial telephone
547
+ 529: diaper
548
+ 530: digital clock
549
+ 531: digital watch
550
+ 532: dining table
551
+ 533: dishcloth
552
+ 534: dishwasher
553
+ 535: disc brake
554
+ 536: dock
555
+ 537: dog sled
556
+ 538: dome
557
+ 539: doormat
558
+ 540: drilling rig
559
+ 541: drum
560
+ 542: drumstick
561
+ 543: dumbbell
562
+ 544: Dutch oven
563
+ 545: electric fan
564
+ 546: electric guitar
565
+ 547: electric locomotive
566
+ 548: entertainment center
567
+ 549: envelope
568
+ 550: espresso machine
569
+ 551: face powder
570
+ 552: feather boa
571
+ 553: filing cabinet
572
+ 554: fireboat
573
+ 555: fire engine
574
+ 556: fire screen sheet
575
+ 557: flagpole
576
+ 558: flute
577
+ 559: folding chair
578
+ 560: football helmet
579
+ 561: forklift
580
+ 562: fountain
581
+ 563: fountain pen
582
+ 564: four-poster bed
583
+ 565: freight car
584
+ 566: French horn
585
+ 567: frying pan
586
+ 568: fur coat
587
+ 569: garbage truck
588
+ 570: gas mask
589
+ 571: gas pump
590
+ 572: goblet
591
+ 573: go-kart
592
+ 574: golf ball
593
+ 575: golf cart
594
+ 576: gondola
595
+ 577: gong
596
+ 578: gown
597
+ 579: grand piano
598
+ 580: greenhouse
599
+ 581: grille
600
+ 582: grocery store
601
+ 583: guillotine
602
+ 584: barrette
603
+ 585: hair spray
604
+ 586: half-track
605
+ 587: hammer
606
+ 588: hamper
607
+ 589: hair dryer
608
+ 590: hand-held computer
609
+ 591: handkerchief
610
+ 592: hard disk drive
611
+ 593: harmonica
612
+ 594: harp
613
+ 595: harvester
614
+ 596: hatchet
615
+ 597: holster
616
+ 598: home theater
617
+ 599: honeycomb
618
+ 600: hook
619
+ 601: hoop skirt
620
+ 602: horizontal bar
621
+ 603: horse-drawn vehicle
622
+ 604: hourglass
623
+ 605: iPod
624
+ 606: clothes iron
625
+ 607: jack-o'-lantern
626
+ 608: jeans
627
+ 609: jeep
628
+ 610: T-shirt
629
+ 611: jigsaw puzzle
630
+ 612: pulled rickshaw
631
+ 613: joystick
632
+ 614: kimono
633
+ 615: knee pad
634
+ 616: knot
635
+ 617: lab coat
636
+ 618: ladle
637
+ 619: lampshade
638
+ 620: laptop computer
639
+ 621: lawn mower
640
+ 622: lens cap
641
+ 623: paper knife
642
+ 624: library
643
+ 625: lifeboat
644
+ 626: lighter
645
+ 627: limousine
646
+ 628: ocean liner
647
+ 629: lipstick
648
+ 630: slip-on shoe
649
+ 631: lotion
650
+ 632: speaker
651
+ 633: loupe
652
+ 634: sawmill
653
+ 635: magnetic compass
654
+ 636: mail bag
655
+ 637: mailbox
656
+ 638: tights
657
+ 639: tank suit
658
+ 640: manhole cover
659
+ 641: maraca
660
+ 642: marimba
661
+ 643: mask
662
+ 644: match
663
+ 645: maypole
664
+ 646: maze
665
+ 647: measuring cup
666
+ 648: medicine chest
667
+ 649: megalith
668
+ 650: microphone
669
+ 651: microwave oven
670
+ 652: military uniform
671
+ 653: milk can
672
+ 654: minibus
673
+ 655: miniskirt
674
+ 656: minivan
675
+ 657: missile
676
+ 658: mitten
677
+ 659: mixing bowl
678
+ 660: mobile home
679
+ 661: Model T
680
+ 662: modem
681
+ 663: monastery
682
+ 664: monitor
683
+ 665: moped
684
+ 666: mortar
685
+ 667: square academic cap
686
+ 668: mosque
687
+ 669: mosquito net
688
+ 670: scooter
689
+ 671: mountain bike
690
+ 672: tent
691
+ 673: computer mouse
692
+ 674: mousetrap
693
+ 675: moving van
694
+ 676: muzzle
695
+ 677: nail
696
+ 678: neck brace
697
+ 679: necklace
698
+ 680: nipple
699
+ 681: notebook computer
700
+ 682: obelisk
701
+ 683: oboe
702
+ 684: ocarina
703
+ 685: odometer
704
+ 686: oil filter
705
+ 687: organ
706
+ 688: oscilloscope
707
+ 689: overskirt
708
+ 690: bullock cart
709
+ 691: oxygen mask
710
+ 692: packet
711
+ 693: paddle
712
+ 694: paddle wheel
713
+ 695: padlock
714
+ 696: paintbrush
715
+ 697: pajamas
716
+ 698: palace
717
+ 699: pan flute
718
+ 700: paper towel
719
+ 701: parachute
720
+ 702: parallel bars
721
+ 703: park bench
722
+ 704: parking meter
723
+ 705: passenger car
724
+ 706: patio
725
+ 707: payphone
726
+ 708: pedestal
727
+ 709: pencil case
728
+ 710: pencil sharpener
729
+ 711: perfume
730
+ 712: Petri dish
731
+ 713: photocopier
732
+ 714: plectrum
733
+ 715: Pickelhaube
734
+ 716: picket fence
735
+ 717: pickup truck
736
+ 718: pier
737
+ 719: piggy bank
738
+ 720: pill bottle
739
+ 721: pillow
740
+ 722: ping-pong ball
741
+ 723: pinwheel
742
+ 724: pirate ship
743
+ 725: pitcher
744
+ 726: hand plane
745
+ 727: planetarium
746
+ 728: plastic bag
747
+ 729: plate rack
748
+ 730: plow
749
+ 731: plunger
750
+ 732: Polaroid camera
751
+ 733: pole
752
+ 734: police van
753
+ 735: poncho
754
+ 736: billiard table
755
+ 737: soda bottle
756
+ 738: pot
757
+ 739: potter's wheel
758
+ 740: power drill
759
+ 741: prayer rug
760
+ 742: printer
761
+ 743: prison
762
+ 744: projectile
763
+ 745: projector
764
+ 746: hockey puck
765
+ 747: punching bag
766
+ 748: purse
767
+ 749: quill
768
+ 750: quilt
769
+ 751: race car
770
+ 752: racket
771
+ 753: radiator
772
+ 754: radio
773
+ 755: radio telescope
774
+ 756: rain barrel
775
+ 757: recreational vehicle
776
+ 758: reel
777
+ 759: reflex camera
778
+ 760: refrigerator
779
+ 761: remote control
780
+ 762: restaurant
781
+ 763: revolver
782
+ 764: rifle
783
+ 765: rocking chair
784
+ 766: rotisserie
785
+ 767: eraser
786
+ 768: rugby ball
787
+ 769: ruler
788
+ 770: running shoe
789
+ 771: safe
790
+ 772: safety pin
791
+ 773: salt shaker
792
+ 774: sandal
793
+ 775: sarong
794
+ 776: saxophone
795
+ 777: scabbard
796
+ 778: weighing scale
797
+ 779: school bus
798
+ 780: schooner
799
+ 781: scoreboard
800
+ 782: CRT screen
801
+ 783: screw
802
+ 784: screwdriver
803
+ 785: seat belt
804
+ 786: sewing machine
805
+ 787: shield
806
+ 788: shoe store
807
+ 789: shoji
808
+ 790: shopping basket
809
+ 791: shopping cart
810
+ 792: shovel
811
+ 793: shower cap
812
+ 794: shower curtain
813
+ 795: ski
814
+ 796: ski mask
815
+ 797: sleeping bag
816
+ 798: slide rule
817
+ 799: sliding door
818
+ 800: slot machine
819
+ 801: snorkel
820
+ 802: snowmobile
821
+ 803: snowplow
822
+ 804: soap dispenser
823
+ 805: soccer ball
824
+ 806: sock
825
+ 807: solar thermal collector
826
+ 808: sombrero
827
+ 809: soup bowl
828
+ 810: space bar
829
+ 811: space heater
830
+ 812: space shuttle
831
+ 813: spatula
832
+ 814: motorboat
833
+ 815: spider web
834
+ 816: spindle
835
+ 817: sports car
836
+ 818: spotlight
837
+ 819: stage
838
+ 820: steam locomotive
839
+ 821: through arch bridge
840
+ 822: steel drum
841
+ 823: stethoscope
842
+ 824: scarf
843
+ 825: stone wall
844
+ 826: stopwatch
845
+ 827: stove
846
+ 828: strainer
847
+ 829: tram
848
+ 830: stretcher
849
+ 831: couch
850
+ 832: stupa
851
+ 833: submarine
852
+ 834: suit
853
+ 835: sundial
854
+ 836: sunglass
855
+ 837: sunglasses
856
+ 838: sunscreen
857
+ 839: suspension bridge
858
+ 840: mop
859
+ 841: sweatshirt
860
+ 842: swimsuit
861
+ 843: swing
862
+ 844: switch
863
+ 845: syringe
864
+ 846: table lamp
865
+ 847: tank
866
+ 848: tape player
867
+ 849: teapot
868
+ 850: teddy bear
869
+ 851: television
870
+ 852: tennis ball
871
+ 853: thatched roof
872
+ 854: front curtain
873
+ 855: thimble
874
+ 856: threshing machine
875
+ 857: throne
876
+ 858: tile roof
877
+ 859: toaster
878
+ 860: tobacco shop
879
+ 861: toilet seat
880
+ 862: torch
881
+ 863: totem pole
882
+ 864: tow truck
883
+ 865: toy store
884
+ 866: tractor
885
+ 867: semi-trailer truck
886
+ 868: tray
887
+ 869: trench coat
888
+ 870: tricycle
889
+ 871: trimaran
890
+ 872: tripod
891
+ 873: triumphal arch
892
+ 874: trolleybus
893
+ 875: trombone
894
+ 876: tub
895
+ 877: turnstile
896
+ 878: typewriter keyboard
897
+ 879: umbrella
898
+ 880: unicycle
899
+ 881: upright piano
900
+ 882: vacuum cleaner
901
+ 883: vase
902
+ 884: vault
903
+ 885: velvet
904
+ 886: vending machine
905
+ 887: vestment
906
+ 888: viaduct
907
+ 889: violin
908
+ 890: volleyball
909
+ 891: waffle iron
910
+ 892: wall clock
911
+ 893: wallet
912
+ 894: wardrobe
913
+ 895: military aircraft
914
+ 896: sink
915
+ 897: washing machine
916
+ 898: water bottle
917
+ 899: water jug
918
+ 900: water tower
919
+ 901: whiskey jug
920
+ 902: whistle
921
+ 903: wig
922
+ 904: window screen
923
+ 905: window shade
924
+ 906: Windsor tie
925
+ 907: wine bottle
926
+ 908: wing
927
+ 909: wok
928
+ 910: wooden spoon
929
+ 911: wool
930
+ 912: split-rail fence
931
+ 913: shipwreck
932
+ 914: yawl
933
+ 915: yurt
934
+ 916: website
935
+ 917: comic book
936
+ 918: crossword
937
+ 919: traffic sign
938
+ 920: traffic light
939
+ 921: dust jacket
940
+ 922: menu
941
+ 923: plate
942
+ 924: guacamole
943
+ 925: consomme
944
+ 926: hot pot
945
+ 927: trifle
946
+ 928: ice cream
947
+ 929: ice pop
948
+ 930: baguette
949
+ 931: bagel
950
+ 932: pretzel
951
+ 933: cheeseburger
952
+ 934: hot dog
953
+ 935: mashed potato
954
+ 936: cabbage
955
+ 937: broccoli
956
+ 938: cauliflower
957
+ 939: zucchini
958
+ 940: spaghetti squash
959
+ 941: acorn squash
960
+ 942: butternut squash
961
+ 943: cucumber
962
+ 944: artichoke
963
+ 945: bell pepper
964
+ 946: cardoon
965
+ 947: mushroom
966
+ 948: Granny Smith
967
+ 949: strawberry
968
+ 950: orange
969
+ 951: lemon
970
+ 952: fig
971
+ 953: pineapple
972
+ 954: banana
973
+ 955: jackfruit
974
+ 956: custard apple
975
+ 957: pomegranate
976
+ 958: hay
977
+ 959: carbonara
978
+ 960: chocolate syrup
979
+ 961: dough
980
+ 962: meatloaf
981
+ 963: pizza
982
+ 964: pot pie
983
+ 965: burrito
984
+ 966: red wine
985
+ 967: espresso
986
+ 968: cup
987
+ 969: eggnog
988
+ 970: alp
989
+ 971: bubble
990
+ 972: cliff
991
+ 973: coral reef
992
+ 974: geyser
993
+ 975: lakeshore
994
+ 976: promontory
995
+ 977: shoal
996
+ 978: seashore
997
+ 979: valley
998
+ 980: volcano
999
+ 981: baseball player
1000
+ 982: bridegroom
1001
+ 983: scuba diver
1002
+ 984: rapeseed
1003
+ 985: daisy
1004
+ 986: yellow lady's slipper
1005
+ 987: corn
1006
+ 988: acorn
1007
+ 989: rose hip
1008
+ 990: horse chestnut seed
1009
+ 991: coral fungus
1010
+ 992: agaric
1011
+ 993: gyromitra
1012
+ 994: stinkhorn mushroom
1013
+ 995: earth star
1014
+ 996: hen-of-the-woods
1015
+ 997: bolete
1016
+ 998: ear
1017
+ 999: toilet paper
1018
+
1019
+ # Download script/URL (optional)
1020
+ download: data/scripts/get_imagenet1000.sh
models/yolov5/data/Objects365.yaml ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # Objects365 dataset https://www.objects365.org/ by Megvii
3
+ # Example usage: python train.py --data Objects365.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
8
+
9
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
10
+ path: ../datasets/Objects365 # dataset root dir
11
+ train: images/train # train images (relative to 'path') 1742289 images
12
+ val: images/val # val images (relative to 'path') 80000 images
13
+ test: # test images (optional)
14
+
15
+ # Classes
16
+ names:
17
+ 0: Person
18
+ 1: Sneakers
19
+ 2: Chair
20
+ 3: Other Shoes
21
+ 4: Hat
22
+ 5: Car
23
+ 6: Lamp
24
+ 7: Glasses
25
+ 8: Bottle
26
+ 9: Desk
27
+ 10: Cup
28
+ 11: Street Lights
29
+ 12: Cabinet/shelf
30
+ 13: Handbag/Satchel
31
+ 14: Bracelet
32
+ 15: Plate
33
+ 16: Picture/Frame
34
+ 17: Helmet
35
+ 18: Book
36
+ 19: Gloves
37
+ 20: Storage box
38
+ 21: Boat
39
+ 22: Leather Shoes
40
+ 23: Flower
41
+ 24: Bench
42
+ 25: Potted Plant
43
+ 26: Bowl/Basin
44
+ 27: Flag
45
+ 28: Pillow
46
+ 29: Boots
47
+ 30: Vase
48
+ 31: Microphone
49
+ 32: Necklace
50
+ 33: Ring
51
+ 34: SUV
52
+ 35: Wine Glass
53
+ 36: Belt
54
+ 37: Monitor/TV
55
+ 38: Backpack
56
+ 39: Umbrella
57
+ 40: Traffic Light
58
+ 41: Speaker
59
+ 42: Watch
60
+ 43: Tie
61
+ 44: Trash bin Can
62
+ 45: Slippers
63
+ 46: Bicycle
64
+ 47: Stool
65
+ 48: Barrel/bucket
66
+ 49: Van
67
+ 50: Couch
68
+ 51: Sandals
69
+ 52: Basket
70
+ 53: Drum
71
+ 54: Pen/Pencil
72
+ 55: Bus
73
+ 56: Wild Bird
74
+ 57: High Heels
75
+ 58: Motorcycle
76
+ 59: Guitar
77
+ 60: Carpet
78
+ 61: Cell Phone
79
+ 62: Bread
80
+ 63: Camera
81
+ 64: Canned
82
+ 65: Truck
83
+ 66: Traffic cone
84
+ 67: Cymbal
85
+ 68: Lifesaver
86
+ 69: Towel
87
+ 70: Stuffed Toy
88
+ 71: Candle
89
+ 72: Sailboat
90
+ 73: Laptop
91
+ 74: Awning
92
+ 75: Bed
93
+ 76: Faucet
94
+ 77: Tent
95
+ 78: Horse
96
+ 79: Mirror
97
+ 80: Power outlet
98
+ 81: Sink
99
+ 82: Apple
100
+ 83: Air Conditioner
101
+ 84: Knife
102
+ 85: Hockey Stick
103
+ 86: Paddle
104
+ 87: Pickup Truck
105
+ 88: Fork
106
+ 89: Traffic Sign
107
+ 90: Balloon
108
+ 91: Tripod
109
+ 92: Dog
110
+ 93: Spoon
111
+ 94: Clock
112
+ 95: Pot
113
+ 96: Cow
114
+ 97: Cake
115
+ 98: Dinning Table
116
+ 99: Sheep
117
+ 100: Hanger
118
+ 101: Blackboard/Whiteboard
119
+ 102: Napkin
120
+ 103: Other Fish
121
+ 104: Orange/Tangerine
122
+ 105: Toiletry
123
+ 106: Keyboard
124
+ 107: Tomato
125
+ 108: Lantern
126
+ 109: Machinery Vehicle
127
+ 110: Fan
128
+ 111: Green Vegetables
129
+ 112: Banana
130
+ 113: Baseball Glove
131
+ 114: Airplane
132
+ 115: Mouse
133
+ 116: Train
134
+ 117: Pumpkin
135
+ 118: Soccer
136
+ 119: Skiboard
137
+ 120: Luggage
138
+ 121: Nightstand
139
+ 122: Tea pot
140
+ 123: Telephone
141
+ 124: Trolley
142
+ 125: Head Phone
143
+ 126: Sports Car
144
+ 127: Stop Sign
145
+ 128: Dessert
146
+ 129: Scooter
147
+ 130: Stroller
148
+ 131: Crane
149
+ 132: Remote
150
+ 133: Refrigerator
151
+ 134: Oven
152
+ 135: Lemon
153
+ 136: Duck
154
+ 137: Baseball Bat
155
+ 138: Surveillance Camera
156
+ 139: Cat
157
+ 140: Jug
158
+ 141: Broccoli
159
+ 142: Piano
160
+ 143: Pizza
161
+ 144: Elephant
162
+ 145: Skateboard
163
+ 146: Surfboard
164
+ 147: Gun
165
+ 148: Skating and Skiing shoes
166
+ 149: Gas stove
167
+ 150: Donut
168
+ 151: Bow Tie
169
+ 152: Carrot
170
+ 153: Toilet
171
+ 154: Kite
172
+ 155: Strawberry
173
+ 156: Other Balls
174
+ 157: Shovel
175
+ 158: Pepper
176
+ 159: Computer Box
177
+ 160: Toilet Paper
178
+ 161: Cleaning Products
179
+ 162: Chopsticks
180
+ 163: Microwave
181
+ 164: Pigeon
182
+ 165: Baseball
183
+ 166: Cutting/chopping Board
184
+ 167: Coffee Table
185
+ 168: Side Table
186
+ 169: Scissors
187
+ 170: Marker
188
+ 171: Pie
189
+ 172: Ladder
190
+ 173: Snowboard
191
+ 174: Cookies
192
+ 175: Radiator
193
+ 176: Fire Hydrant
194
+ 177: Basketball
195
+ 178: Zebra
196
+ 179: Grape
197
+ 180: Giraffe
198
+ 181: Potato
199
+ 182: Sausage
200
+ 183: Tricycle
201
+ 184: Violin
202
+ 185: Egg
203
+ 186: Fire Extinguisher
204
+ 187: Candy
205
+ 188: Fire Truck
206
+ 189: Billiards
207
+ 190: Converter
208
+ 191: Bathtub
209
+ 192: Wheelchair
210
+ 193: Golf Club
211
+ 194: Briefcase
212
+ 195: Cucumber
213
+ 196: Cigar/Cigarette
214
+ 197: Paint Brush
215
+ 198: Pear
216
+ 199: Heavy Truck
217
+ 200: Hamburger
218
+ 201: Extractor
219
+ 202: Extension Cord
220
+ 203: Tong
221
+ 204: Tennis Racket
222
+ 205: Folder
223
+ 206: American Football
224
+ 207: earphone
225
+ 208: Mask
226
+ 209: Kettle
227
+ 210: Tennis
228
+ 211: Ship
229
+ 212: Swing
230
+ 213: Coffee Machine
231
+ 214: Slide
232
+ 215: Carriage
233
+ 216: Onion
234
+ 217: Green beans
235
+ 218: Projector
236
+ 219: Frisbee
237
+ 220: Washing Machine/Drying Machine
238
+ 221: Chicken
239
+ 222: Printer
240
+ 223: Watermelon
241
+ 224: Saxophone
242
+ 225: Tissue
243
+ 226: Toothbrush
244
+ 227: Ice cream
245
+ 228: Hot-air balloon
246
+ 229: Cello
247
+ 230: French Fries
248
+ 231: Scale
249
+ 232: Trophy
250
+ 233: Cabbage
251
+ 234: Hot dog
252
+ 235: Blender
253
+ 236: Peach
254
+ 237: Rice
255
+ 238: Wallet/Purse
256
+ 239: Volleyball
257
+ 240: Deer
258
+ 241: Goose
259
+ 242: Tape
260
+ 243: Tablet
261
+ 244: Cosmetics
262
+ 245: Trumpet
263
+ 246: Pineapple
264
+ 247: Golf Ball
265
+ 248: Ambulance
266
+ 249: Parking meter
267
+ 250: Mango
268
+ 251: Key
269
+ 252: Hurdle
270
+ 253: Fishing Rod
271
+ 254: Medal
272
+ 255: Flute
273
+ 256: Brush
274
+ 257: Penguin
275
+ 258: Megaphone
276
+ 259: Corn
277
+ 260: Lettuce
278
+ 261: Garlic
279
+ 262: Swan
280
+ 263: Helicopter
281
+ 264: Green Onion
282
+ 265: Sandwich
283
+ 266: Nuts
284
+ 267: Speed Limit Sign
285
+ 268: Induction Cooker
286
+ 269: Broom
287
+ 270: Trombone
288
+ 271: Plum
289
+ 272: Rickshaw
290
+ 273: Goldfish
291
+ 274: Kiwi fruit
292
+ 275: Router/modem
293
+ 276: Poker Card
294
+ 277: Toaster
295
+ 278: Shrimp
296
+ 279: Sushi
297
+ 280: Cheese
298
+ 281: Notepaper
299
+ 282: Cherry
300
+ 283: Pliers
301
+ 284: CD
302
+ 285: Pasta
303
+ 286: Hammer
304
+ 287: Cue
305
+ 288: Avocado
306
+ 289: Hamimelon
307
+ 290: Flask
308
+ 291: Mushroom
309
+ 292: Screwdriver
310
+ 293: Soap
311
+ 294: Recorder
312
+ 295: Bear
313
+ 296: Eggplant
314
+ 297: Board Eraser
315
+ 298: Coconut
316
+ 299: Tape Measure/Ruler
317
+ 300: Pig
318
+ 301: Showerhead
319
+ 302: Globe
320
+ 303: Chips
321
+ 304: Steak
322
+ 305: Crosswalk Sign
323
+ 306: Stapler
324
+ 307: Camel
325
+ 308: Formula 1
326
+ 309: Pomegranate
327
+ 310: Dishwasher
328
+ 311: Crab
329
+ 312: Hoverboard
330
+ 313: Meat ball
331
+ 314: Rice Cooker
332
+ 315: Tuba
333
+ 316: Calculator
334
+ 317: Papaya
335
+ 318: Antelope
336
+ 319: Parrot
337
+ 320: Seal
338
+ 321: Butterfly
339
+ 322: Dumbbell
340
+ 323: Donkey
341
+ 324: Lion
342
+ 325: Urinal
343
+ 326: Dolphin
344
+ 327: Electric Drill
345
+ 328: Hair Dryer
346
+ 329: Egg tart
347
+ 330: Jellyfish
348
+ 331: Treadmill
349
+ 332: Lighter
350
+ 333: Grapefruit
351
+ 334: Game board
352
+ 335: Mop
353
+ 336: Radish
354
+ 337: Baozi
355
+ 338: Target
356
+ 339: French
357
+ 340: Spring Rolls
358
+ 341: Monkey
359
+ 342: Rabbit
360
+ 343: Pencil Case
361
+ 344: Yak
362
+ 345: Red Cabbage
363
+ 346: Binoculars
364
+ 347: Asparagus
365
+ 348: Barbell
366
+ 349: Scallop
367
+ 350: Noddles
368
+ 351: Comb
369
+ 352: Dumpling
370
+ 353: Oyster
371
+ 354: Table Tennis paddle
372
+ 355: Cosmetics Brush/Eyeliner Pencil
373
+ 356: Chainsaw
374
+ 357: Eraser
375
+ 358: Lobster
376
+ 359: Durian
377
+ 360: Okra
378
+ 361: Lipstick
379
+ 362: Cosmetics Mirror
380
+ 363: Curling
381
+ 364: Table Tennis
382
+
383
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
384
+ download: |
385
+ from tqdm import tqdm
386
+
387
+ from utils.general import Path, check_requirements, download, np, xyxy2xywhn
388
+
389
+ check_requirements('pycocotools>=2.0')
390
+ from pycocotools.coco import COCO
391
+
392
+ # Make Directories
393
+ dir = Path(yaml['path']) # dataset root dir
394
+ for p in 'images', 'labels':
395
+ (dir / p).mkdir(parents=True, exist_ok=True)
396
+ for q in 'train', 'val':
397
+ (dir / p / q).mkdir(parents=True, exist_ok=True)
398
+
399
+ # Train, Val Splits
400
+ for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
401
+ print(f"Processing {split} in {patches} patches ...")
402
+ images, labels = dir / 'images' / split, dir / 'labels' / split
403
+
404
+ # Download
405
+ url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
406
+ if split == 'train':
407
+ download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
408
+ download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
409
+ elif split == 'val':
410
+ download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
411
+ download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
412
+ download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
413
+
414
+ # Move
415
+ for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
416
+ f.rename(images / f.name) # move to /images/{split}
417
+
418
+ # Labels
419
+ coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
420
+ names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
421
+ for cid, cat in enumerate(names):
422
+ catIds = coco.getCatIds(catNms=[cat])
423
+ imgIds = coco.getImgIds(catIds=catIds)
424
+ for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
425
+ width, height = im["width"], im["height"]
426
+ path = Path(im["file_name"]) # image filename
427
+ try:
428
+ with open(labels / path.with_suffix('.txt').name, 'a') as file:
429
+ annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=False)
430
+ for a in coco.loadAnns(annIds):
431
+ x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
432
+ xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
433
+ x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
434
+ file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
435
+ except Exception as e:
436
+ print(e)
models/yolov5/data/SKU-110K.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
3
+ # Example usage: python train.py --data SKU-110K.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── SKU-110K ← downloads here (13.6 GB)
8
+
9
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
10
+ path: ../datasets/SKU-110K # dataset root dir
11
+ train: train.txt # train images (relative to 'path') 8219 images
12
+ val: val.txt # val images (relative to 'path') 588 images
13
+ test: test.txt # test images (optional) 2936 images
14
+
15
+ # Classes
16
+ names:
17
+ 0: object
18
+
19
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
20
+ download: |
21
+ import shutil
22
+ from tqdm import tqdm
23
+ from utils.general import np, pd, Path, download, xyxy2xywh
24
+
25
+
26
+ # Download
27
+ dir = Path(yaml['path']) # dataset root dir
28
+ parent = Path(dir.parent) # download dir
29
+ urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
30
+ download(urls, dir=parent, delete=False)
31
+
32
+ # Rename directories
33
+ if dir.exists():
34
+ shutil.rmtree(dir)
35
+ (parent / 'SKU110K_fixed').rename(dir) # rename dir
36
+ (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
37
+
38
+ # Convert labels
39
+ names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
40
+ for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
41
+ x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
42
+ images, unique_images = x[:, 0], np.unique(x[:, 0])
43
+ with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
44
+ f.writelines(f'./images/{s}\n' for s in unique_images)
45
+ for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
46
+ cls = 0 # single-class dataset
47
+ with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
48
+ for r in x[images == im]:
49
+ w, h = r[6], r[7] # image width, height
50
+ xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
51
+ f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
models/yolov5/data/VOC.yaml ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
3
+ # Example usage: python train.py --data VOC.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── VOC ← downloads here (2.8 GB)
8
+
9
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
10
+ path: ../datasets/VOC
11
+ train: # train images (relative to 'path') 16551 images
12
+ - images/train2012
13
+ - images/train2007
14
+ - images/val2012
15
+ - images/val2007
16
+ val: # val images (relative to 'path') 4952 images
17
+ - images/test2007
18
+ test: # test images (optional)
19
+ - images/test2007
20
+
21
+ # Classes
22
+ names:
23
+ 0: aeroplane
24
+ 1: bicycle
25
+ 2: bird
26
+ 3: boat
27
+ 4: bottle
28
+ 5: bus
29
+ 6: car
30
+ 7: cat
31
+ 8: chair
32
+ 9: cow
33
+ 10: diningtable
34
+ 11: dog
35
+ 12: horse
36
+ 13: motorbike
37
+ 14: person
38
+ 15: pottedplant
39
+ 16: sheep
40
+ 17: sofa
41
+ 18: train
42
+ 19: tvmonitor
43
+
44
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
45
+ download: |
46
+ import xml.etree.ElementTree as ET
47
+
48
+ from tqdm import tqdm
49
+ from utils.general import download, Path
50
+
51
+
52
+ def convert_label(path, lb_path, year, image_id):
53
+ def convert_box(size, box):
54
+ dw, dh = 1. / size[0], 1. / size[1]
55
+ x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
56
+ return x * dw, y * dh, w * dw, h * dh
57
+
58
+ in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
59
+ out_file = open(lb_path, 'w')
60
+ tree = ET.parse(in_file)
61
+ root = tree.getroot()
62
+ size = root.find('size')
63
+ w = int(size.find('width').text)
64
+ h = int(size.find('height').text)
65
+
66
+ names = list(yaml['names'].values()) # names list
67
+ for obj in root.iter('object'):
68
+ cls = obj.find('name').text
69
+ if cls in names and int(obj.find('difficult').text) != 1:
70
+ xmlbox = obj.find('bndbox')
71
+ bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
72
+ cls_id = names.index(cls) # class id
73
+ out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
74
+
75
+
76
+ # Download
77
+ dir = Path(yaml['path']) # dataset root dir
78
+ url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
79
+ urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
80
+ f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
81
+ f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
82
+ download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
83
+
84
+ # Convert
85
+ path = dir / 'images/VOCdevkit'
86
+ for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
87
+ imgs_path = dir / 'images' / f'{image_set}{year}'
88
+ lbs_path = dir / 'labels' / f'{image_set}{year}'
89
+ imgs_path.mkdir(exist_ok=True, parents=True)
90
+ lbs_path.mkdir(exist_ok=True, parents=True)
91
+
92
+ with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
93
+ image_ids = f.read().strip().split()
94
+ for id in tqdm(image_ids, desc=f'{image_set}{year}'):
95
+ f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
96
+ lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
97
+ f.rename(imgs_path / f.name) # move image
98
+ convert_label(path, lb_path, year, id) # convert labels to YOLO format
models/yolov5/data/VisDrone.yaml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
3
+ # Example usage: python train.py --data VisDrone.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── VisDrone ← downloads here (2.3 GB)
8
+
9
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
10
+ path: ../datasets/VisDrone # dataset root dir
11
+ train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
12
+ val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
13
+ test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
14
+
15
+ # Classes
16
+ names:
17
+ 0: pedestrian
18
+ 1: people
19
+ 2: bicycle
20
+ 3: car
21
+ 4: van
22
+ 5: truck
23
+ 6: tricycle
24
+ 7: awning-tricycle
25
+ 8: bus
26
+ 9: motor
27
+
28
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
29
+ download: |
30
+ from utils.general import download, os, Path
31
+
32
+ def visdrone2yolo(dir):
33
+ from PIL import Image
34
+ from tqdm import tqdm
35
+
36
+ def convert_box(size, box):
37
+ # Convert VisDrone box to YOLO xywh box
38
+ dw = 1. / size[0]
39
+ dh = 1. / size[1]
40
+ return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
41
+
42
+ (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
43
+ pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
44
+ for f in pbar:
45
+ img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
46
+ lines = []
47
+ with open(f, 'r') as file: # read annotation.txt
48
+ for row in [x.split(',') for x in file.read().strip().splitlines()]:
49
+ if row[4] == '0': # VisDrone 'ignored regions' class 0
50
+ continue
51
+ cls = int(row[5]) - 1
52
+ box = convert_box(img_size, tuple(map(int, row[:4])))
53
+ lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
54
+ with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
55
+ fl.writelines(lines) # write label.txt
56
+
57
+
58
+ # Download
59
+ dir = Path(yaml['path']) # dataset root dir
60
+ urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
61
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
62
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
63
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
64
+ download(urls, dir=dir, curl=True, threads=4)
65
+
66
+ # Convert
67
+ for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
68
+ visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
models/yolov5/data/coco.yaml ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # COCO 2017 dataset http://cocodataset.org by Microsoft
3
+ # Example usage: python train.py --data coco.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── coco ← downloads here (20.1 GB)
8
+
9
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
10
+ path: ../datasets/coco # dataset root dir
11
+ train: train2017.txt # train images (relative to 'path') 118287 images
12
+ val: val2017.txt # val images (relative to 'path') 5000 images
13
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
14
+
15
+ # Classes
16
+ names:
17
+ 0: person
18
+ 1: bicycle
19
+ 2: car
20
+ 3: motorcycle
21
+ 4: airplane
22
+ 5: bus
23
+ 6: train
24
+ 7: truck
25
+ 8: boat
26
+ 9: traffic light
27
+ 10: fire hydrant
28
+ 11: stop sign
29
+ 12: parking meter
30
+ 13: bench
31
+ 14: bird
32
+ 15: cat
33
+ 16: dog
34
+ 17: horse
35
+ 18: sheep
36
+ 19: cow
37
+ 20: elephant
38
+ 21: bear
39
+ 22: zebra
40
+ 23: giraffe
41
+ 24: backpack
42
+ 25: umbrella
43
+ 26: handbag
44
+ 27: tie
45
+ 28: suitcase
46
+ 29: frisbee
47
+ 30: skis
48
+ 31: snowboard
49
+ 32: sports ball
50
+ 33: kite
51
+ 34: baseball bat
52
+ 35: baseball glove
53
+ 36: skateboard
54
+ 37: surfboard
55
+ 38: tennis racket
56
+ 39: bottle
57
+ 40: wine glass
58
+ 41: cup
59
+ 42: fork
60
+ 43: knife
61
+ 44: spoon
62
+ 45: bowl
63
+ 46: banana
64
+ 47: apple
65
+ 48: sandwich
66
+ 49: orange
67
+ 50: broccoli
68
+ 51: carrot
69
+ 52: hot dog
70
+ 53: pizza
71
+ 54: donut
72
+ 55: cake
73
+ 56: chair
74
+ 57: couch
75
+ 58: potted plant
76
+ 59: bed
77
+ 60: dining table
78
+ 61: toilet
79
+ 62: tv
80
+ 63: laptop
81
+ 64: mouse
82
+ 65: remote
83
+ 66: keyboard
84
+ 67: cell phone
85
+ 68: microwave
86
+ 69: oven
87
+ 70: toaster
88
+ 71: sink
89
+ 72: refrigerator
90
+ 73: book
91
+ 74: clock
92
+ 75: vase
93
+ 76: scissors
94
+ 77: teddy bear
95
+ 78: hair drier
96
+ 79: toothbrush
97
+
98
+ # Download script/URL (optional)
99
+ download: |
100
+ from utils.general import download, Path
101
+
102
+
103
+ # Download labels
104
+ segments = False # segment or box labels
105
+ dir = Path(yaml['path']) # dataset root dir
106
+ url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
107
+ urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
108
+ download(urls, dir=dir.parent)
109
+
110
+ # Download data
111
+ urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
112
+ 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
113
+ 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
114
+ download(urls, dir=dir / 'images', threads=3)
models/yolov5/data/coco128-seg.yaml ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
3
+ # Example usage: python train.py --data coco128.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── coco128-seg ← downloads here (7 MB)
8
+
9
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
10
+ path: ../datasets/coco128-seg # dataset root dir
11
+ train: images/train2017 # train images (relative to 'path') 128 images
12
+ val: images/train2017 # val images (relative to 'path') 128 images
13
+ test: # test images (optional)
14
+
15
+ # Classes
16
+ names:
17
+ 0: person
18
+ 1: bicycle
19
+ 2: car
20
+ 3: motorcycle
21
+ 4: airplane
22
+ 5: bus
23
+ 6: train
24
+ 7: truck
25
+ 8: boat
26
+ 9: traffic light
27
+ 10: fire hydrant
28
+ 11: stop sign
29
+ 12: parking meter
30
+ 13: bench
31
+ 14: bird
32
+ 15: cat
33
+ 16: dog
34
+ 17: horse
35
+ 18: sheep
36
+ 19: cow
37
+ 20: elephant
38
+ 21: bear
39
+ 22: zebra
40
+ 23: giraffe
41
+ 24: backpack
42
+ 25: umbrella
43
+ 26: handbag
44
+ 27: tie
45
+ 28: suitcase
46
+ 29: frisbee
47
+ 30: skis
48
+ 31: snowboard
49
+ 32: sports ball
50
+ 33: kite
51
+ 34: baseball bat
52
+ 35: baseball glove
53
+ 36: skateboard
54
+ 37: surfboard
55
+ 38: tennis racket
56
+ 39: bottle
57
+ 40: wine glass
58
+ 41: cup
59
+ 42: fork
60
+ 43: knife
61
+ 44: spoon
62
+ 45: bowl
63
+ 46: banana
64
+ 47: apple
65
+ 48: sandwich
66
+ 49: orange
67
+ 50: broccoli
68
+ 51: carrot
69
+ 52: hot dog
70
+ 53: pizza
71
+ 54: donut
72
+ 55: cake
73
+ 56: chair
74
+ 57: couch
75
+ 58: potted plant
76
+ 59: bed
77
+ 60: dining table
78
+ 61: toilet
79
+ 62: tv
80
+ 63: laptop
81
+ 64: mouse
82
+ 65: remote
83
+ 66: keyboard
84
+ 67: cell phone
85
+ 68: microwave
86
+ 69: oven
87
+ 70: toaster
88
+ 71: sink
89
+ 72: refrigerator
90
+ 73: book
91
+ 74: clock
92
+ 75: vase
93
+ 76: scissors
94
+ 77: teddy bear
95
+ 78: hair drier
96
+ 79: toothbrush
97
+
98
+ # Download script/URL (optional)
99
+ download: https://ultralytics.com/assets/coco128-seg.zip
models/yolov5/data/coco128.yaml ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
3
+ # Example usage: python train.py --data coco128.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── coco128 ← downloads here (7 MB)
8
+
9
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
10
+ path: ../datasets/coco128 # dataset root dir
11
+ train: images/train2017 # train images (relative to 'path') 128 images
12
+ val: images/train2017 # val images (relative to 'path') 128 images
13
+ test: # test images (optional)
14
+
15
+ # Classes
16
+ names:
17
+ 0: person
18
+ 1: bicycle
19
+ 2: car
20
+ 3: motorcycle
21
+ 4: airplane
22
+ 5: bus
23
+ 6: train
24
+ 7: truck
25
+ 8: boat
26
+ 9: traffic light
27
+ 10: fire hydrant
28
+ 11: stop sign
29
+ 12: parking meter
30
+ 13: bench
31
+ 14: bird
32
+ 15: cat
33
+ 16: dog
34
+ 17: horse
35
+ 18: sheep
36
+ 19: cow
37
+ 20: elephant
38
+ 21: bear
39
+ 22: zebra
40
+ 23: giraffe
41
+ 24: backpack
42
+ 25: umbrella
43
+ 26: handbag
44
+ 27: tie
45
+ 28: suitcase
46
+ 29: frisbee
47
+ 30: skis
48
+ 31: snowboard
49
+ 32: sports ball
50
+ 33: kite
51
+ 34: baseball bat
52
+ 35: baseball glove
53
+ 36: skateboard
54
+ 37: surfboard
55
+ 38: tennis racket
56
+ 39: bottle
57
+ 40: wine glass
58
+ 41: cup
59
+ 42: fork
60
+ 43: knife
61
+ 44: spoon
62
+ 45: bowl
63
+ 46: banana
64
+ 47: apple
65
+ 48: sandwich
66
+ 49: orange
67
+ 50: broccoli
68
+ 51: carrot
69
+ 52: hot dog
70
+ 53: pizza
71
+ 54: donut
72
+ 55: cake
73
+ 56: chair
74
+ 57: couch
75
+ 58: potted plant
76
+ 59: bed
77
+ 60: dining table
78
+ 61: toilet
79
+ 62: tv
80
+ 63: laptop
81
+ 64: mouse
82
+ 65: remote
83
+ 66: keyboard
84
+ 67: cell phone
85
+ 68: microwave
86
+ 69: oven
87
+ 70: toaster
88
+ 71: sink
89
+ 72: refrigerator
90
+ 73: book
91
+ 74: clock
92
+ 75: vase
93
+ 76: scissors
94
+ 77: teddy bear
95
+ 78: hair drier
96
+ 79: toothbrush
97
+
98
+ # Download script/URL (optional)
99
+ download: https://ultralytics.com/assets/coco128.zip
models/yolov5/data/hyps/hyp.Objects365.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # Hyperparameters for Objects365 training
3
+ # python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
4
+ # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.00258
7
+ lrf: 0.17
8
+ momentum: 0.779
9
+ weight_decay: 0.00058
10
+ warmup_epochs: 1.33
11
+ warmup_momentum: 0.86
12
+ warmup_bias_lr: 0.0711
13
+ box: 0.0539
14
+ cls: 0.299
15
+ cls_pw: 0.825
16
+ obj: 0.632
17
+ obj_pw: 1.0
18
+ iou_t: 0.2
19
+ anchor_t: 3.44
20
+ anchors: 3.2
21
+ fl_gamma: 0.0
22
+ hsv_h: 0.0188
23
+ hsv_s: 0.704
24
+ hsv_v: 0.36
25
+ degrees: 0.0
26
+ translate: 0.0902
27
+ scale: 0.491
28
+ shear: 0.0
29
+ perspective: 0.0
30
+ flipud: 0.0
31
+ fliplr: 0.5
32
+ mosaic: 1.0
33
+ mixup: 0.0
34
+ copy_paste: 0.0
models/yolov5/data/hyps/hyp.VOC.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ # Hyperparameters for VOC training
3
+ # python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
4
+ # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ # YOLOv5 Hyperparameter Evolution Results
7
+ # Best generation: 467
8
+ # Last generation: 996
9
+ # metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
10
+ # 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865
11
+
12
+ lr0: 0.00334
13
+ lrf: 0.15135
14
+ momentum: 0.74832
15
+ weight_decay: 0.00025
16
+ warmup_epochs: 3.3835
17
+ warmup_momentum: 0.59462
18
+ warmup_bias_lr: 0.18657
19
+ box: 0.02
20
+ cls: 0.21638
21
+ cls_pw: 0.5
22
+ obj: 0.51728
23
+ obj_pw: 0.67198
24
+ iou_t: 0.2
25
+ anchor_t: 3.3744
26
+ fl_gamma: 0.0
27
+ hsv_h: 0.01041
28
+ hsv_s: 0.54703
29
+ hsv_v: 0.27739
30
+ degrees: 0.0
31
+ translate: 0.04591
32
+ scale: 0.75544
33
+ shear: 0.0
34
+ perspective: 0.0
35
+ flipud: 0.0
36
+ fliplr: 0.5
37
+ mosaic: 0.85834
38
+ mixup: 0.04266
39
+ copy_paste: 0.0
40
+ anchors: 3.412