File size: 5,379 Bytes
98fa4c9
e3c8fbc
 
c8f424e
 
98fa4c9
 
 
 
 
bea58f2
 
98fa4c9
 
 
 
e3c8fbc
98fa4c9
c8f424e
e3c8fbc
98fa4c9
 
 
 
 
 
 
 
 
 
c8f424e
 
98fa4c9
 
e3c8fbc
98fa4c9
 
 
 
 
 
 
 
bea58f2
98fa4c9
 
 
 
 
 
c8f424e
 
175fde6
98fa4c9
c8f424e
8180bda
98fa4c9
 
 
 
 
c8f424e
98fa4c9
 
e3c8fbc
98fa4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c8fbc
98fa4c9
 
 
 
 
c8f424e
98fa4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c8fbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from langchain.chains import RetrievalQA
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.manager import CallbackManager
#from langchain_community.llms import Ollama
#from langchain_community.embeddings.ollama import OllamaEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
import streamlit as st
import os
import time
from langchain_community.llms import HuggingFaceEndpoint


from langchain_community.embeddings import HuggingFaceEmbeddings

model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
)

if not os.path.exists('files'):
    os.mkdir('files')

if not os.path.exists('jj'):
    os.mkdir('jj')

if 'template' not in st.session_state:
    st.session_state.template = """You are a knowledgeable chatbot, here to help with questions of the user. Your tone should be professional and informative.Try to give answer in tabular and shortcut.
    Context: {context}
    History: {history}
    User: {question}
    Chatbot:"""
if 'prompt' not in st.session_state:
    st.session_state.prompt = PromptTemplate(
        input_variables=["history", "context", "question"],
        template=st.session_state.template,
    )
if 'memory' not in st.session_state:
    st.session_state.memory = ConversationBufferMemory(
        memory_key="history",
        return_messages=True,
        input_key="question")
if 'vectorstore' not in st.session_state:
    #st.session_state.vectorstore = Chroma(persist_directory='jj', embedding_function=OllamaEmbeddings(base_url='http://localhost:11434',model="mistral")
    st.session_state.vectorstore = Chroma(persist_directory='jj', embedding_function=embeddings) 
    
if 'llm' not in st.session_state:
    #st.session_state.llm = Ollama(base_url="http://localhost:11434",model="mistral",verbose=True,callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),)
    st.session_state.llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.3", Temperature=0.2)
    
# Initialize session state
if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []

st.title("PDF Chatbot")

# Upload a PDF file
uploaded_file = st.file_uploader("Upload your PDF", type='pdf')

for message in st.session_state.chat_history:
    with st.chat_message(message["role"]):
        st.markdown(message["message"])

if uploaded_file is not None:
    if not os.path.isfile("files/"+uploaded_file.name+".pdf"):
        with st.status("Analyzing your document..."):
            bytes_data = uploaded_file.read()
            f = open("files/"+uploaded_file.name+".pdf", "wb")
            f.write(bytes_data)
            f.close()
            loader = PyPDFLoader("files/"+uploaded_file.name+".pdf")
            data = loader.load()

            # Initialize text splitter
            text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=1500,
                chunk_overlap=0,
                length_function=len
            )
            all_splits = text_splitter.split_documents(data)

            # Create and persist the vector store
            #st.session_state.vectorstore = Chroma.from_documents(documents=all_splits,embedding=OllamaEmbeddings(model="mistral"))
            st.session_state.vectorstore = Chroma.from_documents(documents=all_splits,embedding=embeddings)
            st.session_state.vectorstore.persist()

    st.session_state.retriever = st.session_state.vectorstore.as_retriever()
    # Initialize the QA chain
    if 'qa_chain' not in st.session_state:
        st.session_state.qa_chain = RetrievalQA.from_chain_type(
            llm=st.session_state.llm,
            chain_type='stuff',
            retriever=st.session_state.retriever,
            verbose=True,
            chain_type_kwargs={
                "verbose": True,
                "prompt": st.session_state.prompt,
                "memory": st.session_state.memory,
            }
        )

    # Chat input
    if user_input := st.chat_input("You:", key="user_input"):
        user_message = {"role": "user", "message": user_input}
        st.session_state.chat_history.append(user_message)
        with st.chat_message("user"):
            st.markdown(user_input)
        with st.chat_message("assistant"):
            with st.spinner("Assistant is typing..."):
                response = st.session_state.qa_chain(user_input)
            message_placeholder = st.empty()
            full_response = ""
            for chunk in response['result'].split():
                full_response += chunk + " "
                time.sleep(0.05)
                # Add a blinking cursor to simulate typing
                message_placeholder.markdown(full_response + "▌")
            message_placeholder.markdown(full_response)

        chatbot_message = {"role": "assistant", "message": response['result']}
        st.session_state.chat_history.append(chatbot_message)


else:
    st.write("Please upload a PDF file.")