Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,24 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
3 |
|
4 |
-
# mistralai/Mistral-Nemo-Instruct-2407
|
5 |
# Load the model and tokenizer
|
6 |
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-3B-Instruct")
|
7 |
model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-3B-Instruct")
|
8 |
|
9 |
-
st.title("Llama-3.2-3B-Instruct Text Generation")
|
10 |
-
st.write("Enter a prompt and generate text using the Llama 3.2 3B model.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
with st.form("llm-form"):
|
13 |
user_input = st.text_area("Enter your question or statement:")
|
@@ -15,6 +26,6 @@ with st.form("llm-form"):
|
|
15 |
|
16 |
if submit:
|
17 |
inputs = tokenizer(user_input, return_tensors="pt")
|
18 |
-
outputs = model.generate(inputs["input_ids"], max_length=
|
19 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
st.write(generated_text)
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from langchain_core.prompts import ChatPromptTemplate
|
4 |
|
|
|
5 |
# Load the model and tokenizer
|
6 |
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-3B-Instruct")
|
7 |
model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-3B-Instruct")
|
8 |
|
9 |
+
st.title("Unsloth Llama-3.2-3B-Instruct Text Generation")
|
10 |
+
st.write("Enter a prompt and generate text using the Unsloth Llama 3.2 3B model.")
|
11 |
+
|
12 |
+
prompt = """
|
13 |
+
You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question.
|
14 |
+
If you don't know the answer, just say that you don't know.
|
15 |
+
Answer in bullet points. Make sure your answer is relevant to the question and it is answered from the context only.
|
16 |
+
Question: {question}
|
17 |
+
Context: {context}
|
18 |
+
Answer:
|
19 |
+
"""
|
20 |
+
|
21 |
+
prompt = ChatPromptTemplate.from_template(prompt)
|
22 |
|
23 |
with st.form("llm-form"):
|
24 |
user_input = st.text_area("Enter your question or statement:")
|
|
|
26 |
|
27 |
if submit:
|
28 |
inputs = tokenizer(user_input, return_tensors="pt")
|
29 |
+
outputs = model.generate(inputs["input_ids"], max_length=200)
|
30 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
st.write(generated_text)
|