Spaces:
Runtime error
Runtime error
Upload model_worker.py
Browse files- model_worker.py +174 -0
model_worker.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A model worker executes the model.
|
3 |
+
"""
|
4 |
+
import argparse
|
5 |
+
import asyncio
|
6 |
+
import json
|
7 |
+
import time
|
8 |
+
import threading
|
9 |
+
import uuid
|
10 |
+
|
11 |
+
from fastapi import FastAPI, Request, BackgroundTasks
|
12 |
+
from fastapi.responses import StreamingResponse
|
13 |
+
import requests
|
14 |
+
import torch
|
15 |
+
import uvicorn
|
16 |
+
from functools import partial
|
17 |
+
|
18 |
+
from mplug_docowl.utils import (build_logger, server_error_msg,
|
19 |
+
pretty_print_semaphore)
|
20 |
+
|
21 |
+
from mplug_docowl.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN,WORKER_HEART_BEAT_INTERVAL
|
22 |
+
from mplug_docowl.conversation import conv_templates, SeparatorStyle
|
23 |
+
from mplug_docowl.model.builder import load_pretrained_model
|
24 |
+
from mplug_docowl.mm_utils import load_image_from_base64, process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
25 |
+
from mplug_docowl.processor import DocProcessor
|
26 |
+
|
27 |
+
|
28 |
+
from transformers import TextIteratorStreamer
|
29 |
+
from threading import Thread
|
30 |
+
from icecream import ic
|
31 |
+
|
32 |
+
|
33 |
+
GB = 1 << 30
|
34 |
+
|
35 |
+
worker_id = str(uuid.uuid4())[:6]
|
36 |
+
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
|
37 |
+
global_counter = 0
|
38 |
+
|
39 |
+
model_semaphore = None
|
40 |
+
|
41 |
+
|
42 |
+
def heart_beat_worker(controller):
|
43 |
+
|
44 |
+
while True:
|
45 |
+
time.sleep(WORKER_HEART_BEAT_INTERVAL)
|
46 |
+
controller.send_heart_beat()
|
47 |
+
|
48 |
+
|
49 |
+
class ModelWorker:
|
50 |
+
def __init__(self,
|
51 |
+
model_path, model_base, model_name,
|
52 |
+
resolution, anchors, add_global_img,
|
53 |
+
load_8bit, load_4bit, device):
|
54 |
+
|
55 |
+
if model_path.endswith("/"):
|
56 |
+
model_path = model_path[:-1]
|
57 |
+
|
58 |
+
self.model_name = get_model_name_from_path(model_path)
|
59 |
+
|
60 |
+
self.device = device
|
61 |
+
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
|
62 |
+
|
63 |
+
self.tokenizer, self.model, _, self.context_len = load_pretrained_model(
|
64 |
+
model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device)
|
65 |
+
|
66 |
+
self.resolution=resolution
|
67 |
+
self.token_num_each_img = (self.resolution/14)*(self.resolution/14)/self.model.get_model().vision2text.conv_patch
|
68 |
+
self.doc_image_processor = DocProcessor(image_size=resolution, anchors=anchors, add_global_img=add_global_img, add_textual_crop_indicator=True)
|
69 |
+
|
70 |
+
|
71 |
+
self.is_multimodal = True
|
72 |
+
|
73 |
+
|
74 |
+
@torch.inference_mode()
|
75 |
+
def generate_stream(self, params):
|
76 |
+
tokenizer, model = self.tokenizer, self.model
|
77 |
+
|
78 |
+
prompt = params["prompt"]
|
79 |
+
ori_prompt = prompt
|
80 |
+
images = params.get("images", None)
|
81 |
+
num_image_tokens = 0
|
82 |
+
if images is not None and len(images) > 0 and self.is_multimodal:
|
83 |
+
if len(images) > 0:
|
84 |
+
|
85 |
+
images = [load_image_from_base64(image) for image in images]
|
86 |
+
# docowl only support 1 image, so only keep the last image
|
87 |
+
image = images[-1]
|
88 |
+
assert prompt.count(DEFAULT_IMAGE_TOKEN) == 1
|
89 |
+
|
90 |
+
images, patch_positions, prompt = self.doc_image_processor(images=image, query=prompt)
|
91 |
+
images = images.to(self.model.device, dtype=torch.float16)
|
92 |
+
patch_positions = patch_positions.to(self.model.device)
|
93 |
+
|
94 |
+
replace_token = DEFAULT_IMAGE_TOKEN
|
95 |
+
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
96 |
+
num_image_tokens = prompt.count(replace_token) * (self.token_num_each_img+1)
|
97 |
+
else:
|
98 |
+
images = None
|
99 |
+
patch_positions = None
|
100 |
+
image_args = {"images": images, "patch_positions":patch_positions}
|
101 |
+
else:
|
102 |
+
images = None
|
103 |
+
image_args = {}
|
104 |
+
|
105 |
+
temperature = float(params.get("temperature", 1.0))
|
106 |
+
top_p = float(params.get("top_p", 1.0))
|
107 |
+
# max_context_length = getattr(model.config, 'max_position_embeddings', 4096)
|
108 |
+
max_context_length = 4096
|
109 |
+
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
|
110 |
+
stop_str = params.get("stop", None)
|
111 |
+
# do_sample = True if temperature > 0.001 else False
|
112 |
+
do_sample = False
|
113 |
+
|
114 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
|
115 |
+
keywords = [stop_str]
|
116 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
117 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
|
118 |
+
|
119 |
+
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
|
120 |
+
ic(max_context_length, input_ids.shape[-1], num_image_tokens, max_new_tokens)
|
121 |
+
|
122 |
+
if max_new_tokens < 1:
|
123 |
+
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode()
|
124 |
+
return
|
125 |
+
|
126 |
+
thread = Thread(target=model.generate, kwargs=dict(
|
127 |
+
inputs=input_ids,
|
128 |
+
do_sample=do_sample,
|
129 |
+
temperature=temperature,
|
130 |
+
# top_p=top_p,
|
131 |
+
max_new_tokens=max_new_tokens,
|
132 |
+
streamer=streamer,
|
133 |
+
stopping_criteria=[stopping_criteria],
|
134 |
+
use_cache=True,
|
135 |
+
**image_args
|
136 |
+
))
|
137 |
+
thread.start()
|
138 |
+
|
139 |
+
generated_text = ori_prompt
|
140 |
+
for new_text in streamer:
|
141 |
+
generated_text += new_text
|
142 |
+
if generated_text.endswith(stop_str):
|
143 |
+
generated_text = generated_text[:-len(stop_str)]
|
144 |
+
# yield json.dumps({"text": generated_text, "error_code": 0}).encode()
|
145 |
+
# replace < > to [ ] to avoide <doc>,<md>,<ocr>,<bbox> are removed by web code
|
146 |
+
yield json.dumps({"text": generated_text.replace('<','[').replace('>',']'), "error_code": 0}).encode()
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
def generate_stream_gate(self, params):
|
151 |
+
try:
|
152 |
+
for x in self.generate_stream(params):
|
153 |
+
yield x
|
154 |
+
except ValueError as e:
|
155 |
+
print("Caught ValueError:", e)
|
156 |
+
ret = {
|
157 |
+
"text": server_error_msg,
|
158 |
+
"error_code": 1,
|
159 |
+
}
|
160 |
+
yield json.dumps(ret).encode()
|
161 |
+
except torch.cuda.CudaError as e:
|
162 |
+
print("Caught torch.cuda.CudaError:", e)
|
163 |
+
ret = {
|
164 |
+
"text": server_error_msg,
|
165 |
+
"error_code": 1,
|
166 |
+
}
|
167 |
+
yield json.dumps(ret).encode()
|
168 |
+
except Exception as e:
|
169 |
+
print("Caught Unknown Error", e)
|
170 |
+
ret = {
|
171 |
+
"text": server_error_msg,
|
172 |
+
"error_code": 1,
|
173 |
+
}
|
174 |
+
yield json.dumps(ret).encode()
|