Spaces:
Runtime error
Runtime error
File size: 39,203 Bytes
be11144 4996f01 c89c010 be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 |
"""
Here are some use cases:
python main.py --config config/all.yaml --experiment experiment_8x1 --signature demo1 --target data/demo1.png
"""
import pydiffvg
import torch
import cv2
import matplotlib.pyplot as plt
import random
import argparse
import math
import errno
from tqdm import tqdm
from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR
from torch.nn.functional import adaptive_avg_pool2d
import warnings
warnings.filterwarnings("ignore")
import PIL
import PIL.Image
import os
import os.path as osp
import numpy as np
import numpy.random as npr
import shutil
import copy
# import skfmm
from xing_loss import xing_loss
import yaml
from easydict import EasyDict as edict
pydiffvg.set_print_timing(False)
gamma = 1.0
##########
# helper #
##########
from utils import \
get_experiment_id, \
get_path_schedule, \
edict_2_dict, \
check_and_create_dir
def get_bezier_circle(radius=1, segments=4, bias=None):
points = []
if bias is None:
bias = (random.random(), random.random())
avg_degree = 360 / (segments*3)
for i in range(0, segments*3):
point = (np.cos(np.deg2rad(i * avg_degree)),
np.sin(np.deg2rad(i * avg_degree)))
points.append(point)
points = torch.tensor(points)
points = (points)*radius + torch.tensor(bias).unsqueeze(dim=0)
points = points.type(torch.FloatTensor)
return points
def get_sdf(phi, method='skfmm', **kwargs):
if method == 'skfmm':
import skfmm
phi = (phi-0.5)*2
if (phi.max() <= 0) or (phi.min() >= 0):
return np.zeros(phi.shape).astype(np.float32)
sd = skfmm.distance(phi, dx=1)
flip_negative = kwargs.get('flip_negative', True)
if flip_negative:
sd = np.abs(sd)
truncate = kwargs.get('truncate', 10)
sd = np.clip(sd, -truncate, truncate)
# print(f"max sd value is: {sd.max()}")
zero2max = kwargs.get('zero2max', True)
if zero2max and flip_negative:
sd = sd.max() - sd
elif zero2max:
raise ValueError
normalize = kwargs.get('normalize', 'sum')
if normalize == 'sum':
sd /= sd.sum()
elif normalize == 'to1':
sd /= sd.max()
return sd
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--debug', action='store_true', default=False)
parser.add_argument("--config", type=str)
parser.add_argument("--experiment", type=str)
parser.add_argument("--seed", type=int)
parser.add_argument("--target", type=str, help="target image path")
parser.add_argument('--log_dir', metavar='DIR', default="log/debug")
parser.add_argument('--initial', type=str, default="random", choices=['random', 'circle'])
parser.add_argument('--signature', nargs='+', type=str)
parser.add_argument('--seginit', nargs='+', type=str)
parser.add_argument("--num_segments", type=int, default=4)
# parser.add_argument("--num_paths", type=str, default="1,1,1")
# parser.add_argument("--num_iter", type=int, default=500)
# parser.add_argument('--free', action='store_true')
# Please ensure that image resolution is divisible by pool_size; otherwise the performance would drop a lot.
# parser.add_argument('--pool_size', type=int, default=40, help="the pooled image size for next path initialization")
# parser.add_argument('--save_loss', action='store_true')
# parser.add_argument('--save_init', action='store_true')
# parser.add_argument('--save_image', action='store_true')
# parser.add_argument('--save_video', action='store_true')
# parser.add_argument('--print_weight', action='store_true')
# parser.add_argument('--circle_init_radius', type=float)
cfg = edict()
args = parser.parse_args()
cfg.debug = args.debug
cfg.config = args.config
cfg.experiment = args.experiment
cfg.seed = args.seed
cfg.target = args.target
cfg.log_dir = args.log_dir
cfg.initial = args.initial
cfg.signature = args.signature
# set cfg num_segments in command
cfg.num_segments = args.num_segments
if args.seginit is not None:
cfg.seginit = edict()
cfg.seginit.type = args.seginit[0]
if cfg.seginit.type == 'circle':
cfg.seginit.radius = float(args.seginit[1])
return cfg
def ycrcb_conversion(im, format='[bs x 3 x 2D]', reverse=False):
mat = torch.FloatTensor([
[ 65.481/255, 128.553/255, 24.966/255], # ranged_from [0, 219/255]
[-37.797/255, -74.203/255, 112.000/255], # ranged_from [-112/255, 112/255]
[112.000/255, -93.786/255, -18.214/255], # ranged_from [-112/255, 112/255]
]).to(im.device)
if reverse:
mat = mat.inverse()
if format == '[bs x 3 x 2D]':
im = im.permute(0, 2, 3, 1)
im = torch.matmul(im, mat.T)
im = im.permute(0, 3, 1, 2).contiguous()
return im
elif format == '[2D x 3]':
im = torch.matmul(im, mat.T)
return im
else:
raise ValueError
class random_coord_init():
def __init__(self, canvas_size):
self.canvas_size = canvas_size
def __call__(self):
h, w = self.canvas_size
return [npr.uniform(0, 1)*w, npr.uniform(0, 1)*h]
class naive_coord_init():
def __init__(self, pred, gt, format='[bs x c x 2D]', replace_sampling=True):
if isinstance(pred, torch.Tensor):
pred = pred.detach().cpu().numpy()
if isinstance(gt, torch.Tensor):
gt = gt.detach().cpu().numpy()
if format == '[bs x c x 2D]':
self.map = ((pred[0] - gt[0])**2).sum(0)
elif format == ['[2D x c]']:
self.map = ((pred - gt)**2).sum(-1)
else:
raise ValueError
self.replace_sampling = replace_sampling
def __call__(self):
coord = np.where(self.map == self.map.max())
coord_h, coord_w = coord[0][0], coord[1][0]
if self.replace_sampling:
self.map[coord_h, coord_w] = -1
return [coord_w, coord_h]
class sparse_coord_init():
def __init__(self, pred, gt, format='[bs x c x 2D]', quantile_interval=200, nodiff_thres=0.1):
if isinstance(pred, torch.Tensor):
pred = pred.detach().cpu().numpy()
if isinstance(gt, torch.Tensor):
gt = gt.detach().cpu().numpy()
if format == '[bs x c x 2D]':
self.map = ((pred[0] - gt[0])**2).sum(0)
self.reference_gt = copy.deepcopy(
np.transpose(gt[0], (1, 2, 0)))
elif format == ['[2D x c]']:
self.map = (np.abs(pred - gt)).sum(-1)
self.reference_gt = copy.deepcopy(gt[0])
else:
raise ValueError
# OptionA: Zero too small errors to avoid the error too small deadloop
self.map[self.map < nodiff_thres] = 0
quantile_interval = np.linspace(0., 1., quantile_interval)
quantized_interval = np.quantile(self.map, quantile_interval)
# remove redundant
quantized_interval = np.unique(quantized_interval)
quantized_interval = sorted(quantized_interval[1:-1])
self.map = np.digitize(self.map, quantized_interval, right=False)
self.map = np.clip(self.map, 0, 255).astype(np.uint8)
self.idcnt = {}
for idi in sorted(np.unique(self.map)):
self.idcnt[idi] = (self.map==idi).sum()
self.idcnt.pop(min(self.idcnt.keys()))
# remove smallest one to remove the correct region
def __call__(self):
if len(self.idcnt) == 0:
h, w = self.map.shape
return [npr.uniform(0, 1)*w, npr.uniform(0, 1)*h]
target_id = max(self.idcnt, key=self.idcnt.get)
_, component, cstats, ccenter = cv2.connectedComponentsWithStats(
(self.map==target_id).astype(np.uint8), connectivity=4)
# remove cid = 0, it is the invalid area
csize = [ci[-1] for ci in cstats[1:]]
target_cid = csize.index(max(csize))+1
center = ccenter[target_cid][::-1]
coord = np.stack(np.where(component == target_cid)).T
dist = np.linalg.norm(coord-center, axis=1)
target_coord_id = np.argmin(dist)
coord_h, coord_w = coord[target_coord_id]
# replace_sampling
self.idcnt[target_id] -= max(csize)
if self.idcnt[target_id] == 0:
self.idcnt.pop(target_id)
self.map[component == target_cid] = 0
return [coord_w, coord_h]
def init_shapes(num_paths,
num_segments,
canvas_size,
seginit_cfg,
shape_cnt,
pos_init_method=None,
trainable_stroke=False,
**kwargs):
shapes = []
shape_groups = []
h, w = canvas_size
# change path init location
if pos_init_method is None:
pos_init_method = random_coord_init(canvas_size=canvas_size)
for i in range(num_paths):
num_control_points = [2] * num_segments
if seginit_cfg.type=="random":
points = []
p0 = pos_init_method()
color_ref = copy.deepcopy(p0)
points.append(p0)
for j in range(num_segments):
radius = seginit_cfg.radius
p1 = (p0[0] + radius * npr.uniform(-0.5, 0.5),
p0[1] + radius * npr.uniform(-0.5, 0.5))
p2 = (p1[0] + radius * npr.uniform(-0.5, 0.5),
p1[1] + radius * npr.uniform(-0.5, 0.5))
p3 = (p2[0] + radius * npr.uniform(-0.5, 0.5),
p2[1] + radius * npr.uniform(-0.5, 0.5))
points.append(p1)
points.append(p2)
if j < num_segments - 1:
points.append(p3)
p0 = p3
points = torch.FloatTensor(points)
# circle points initialization
elif seginit_cfg.type=="circle":
radius = seginit_cfg.radius
if radius is None:
radius = npr.uniform(0.5, 1)
center = pos_init_method()
color_ref = copy.deepcopy(center)
points = get_bezier_circle(
radius=radius, segments=num_segments,
bias=center)
path = pydiffvg.Path(num_control_points = torch.LongTensor(num_control_points),
points = points,
stroke_width = torch.tensor(0.0),
is_closed = True)
shapes.append(path)
# !!!!!!problem is here. the shape group shape_ids is wrong
if 'gt' in kwargs:
wref, href = color_ref
wref = max(0, min(int(wref), w-1))
href = max(0, min(int(href), h-1))
fill_color_init = list(gt[0, :, href, wref]) + [1.]
fill_color_init = torch.FloatTensor(fill_color_init)
stroke_color_init = torch.FloatTensor(npr.uniform(size=[4]))
else:
fill_color_init = torch.FloatTensor(npr.uniform(size=[4]))
stroke_color_init = torch.FloatTensor(npr.uniform(size=[4]))
path_group = pydiffvg.ShapeGroup(
shape_ids = torch.LongTensor([shape_cnt+i]),
fill_color = fill_color_init,
stroke_color = stroke_color_init,
)
shape_groups.append(path_group)
point_var = []
color_var = []
for path in shapes:
path.points.requires_grad = True
point_var.append(path.points)
for group in shape_groups:
group.fill_color.requires_grad = True
color_var.append(group.fill_color)
if trainable_stroke:
stroke_width_var = []
stroke_color_var = []
for path in shapes:
path.stroke_width.requires_grad = True
stroke_width_var.append(path.stroke_width)
for group in shape_groups:
group.stroke_color.requires_grad = True
stroke_color_var.append(group.stroke_color)
return shapes, shape_groups, point_var, color_var, stroke_width_var, stroke_color_var
else:
return shapes, shape_groups, point_var, color_var
class linear_decay_lrlambda_f(object):
def __init__(self, decay_every, decay_ratio):
self.decay_every = decay_every
self.decay_ratio = decay_ratio
def __call__(self, n):
decay_time = n//self.decay_every
decay_step = n %self.decay_every
lr_s = self.decay_ratio**decay_time
lr_e = self.decay_ratio**(decay_time+1)
r = decay_step/self.decay_every
lr = lr_s * (1-r) + lr_e * r
return lr
def main_func(target, experiment, cfg_arg):
with open(cfg_arg.config, 'r') as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
cfg_default = edict(cfg['default'])
cfg = edict(cfg[cfg_arg.experiment])
cfg.update(cfg_default)
cfg.update(cfg_arg)
cfg.exid = get_experiment_id(cfg.debug)
cfg.experiment_dir = \
osp.join(cfg.log_dir, '{}_{}'.format(cfg.exid, '_'.join(cfg.signature)))
cfg.target = target
cfg.experiment = experiment
configfile = osp.join(cfg.experiment_dir, 'config.yaml')
check_and_create_dir(configfile)
with open(osp.join(configfile), 'w') as f:
yaml.dump(edict_2_dict(cfg), f)
# Use GPU if available
pydiffvg.set_use_gpu(torch.cuda.is_available())
device = pydiffvg.get_device()
gt = np.array(PIL.Image.open(cfg.target))
print(f"Input image shape is: {gt.shape}")
if len(gt.shape) == 2:
print("Converting the gray-scale image to RGB.")
gt = gt.unsqueeze(dim=-1).repeat(1,1,3)
if gt.shape[2] == 4:
print("Input image includes alpha channel, simply dropout alpha channel.")
gt = gt[:, :, :3]
gt = (gt/255).astype(np.float32)
gt = torch.FloatTensor(gt).permute(2, 0, 1)[None].to(device)
if cfg.use_ycrcb:
gt = ycrcb_conversion(gt)
h, w = gt.shape[2:]
path_schedule = get_path_schedule(**cfg.path_schedule)
if cfg.seed is not None:
random.seed(cfg.seed)
npr.seed(cfg.seed)
torch.manual_seed(cfg.seed)
render = pydiffvg.RenderFunction.apply
shapes_record, shape_groups_record = [], []
region_loss = None
loss_matrix = []
para_point, para_color = {}, {}
if cfg.trainable.stroke:
para_stroke_width, para_stroke_color = {}, {}
pathn_record = []
# Background
if cfg.trainable.bg:
# meancolor = gt.mean([2, 3])[0]
para_bg = torch.tensor([1., 1., 1.], requires_grad=True, device=device)
else:
if cfg.use_ycrcb:
para_bg = torch.tensor([219/255, 0, 0], requires_grad=False, device=device)
else:
para_bg = torch.tensor([1., 1., 1.], requires_grad=False, device=device)
##################
# start_training #
##################
loss_weight = None
loss_weight_keep = 0
if cfg.coord_init.type == 'naive':
pos_init_method = naive_coord_init(
para_bg.view(1, -1, 1, 1).repeat(1, 1, h, w), gt)
elif cfg.coord_init.type == 'sparse':
pos_init_method = sparse_coord_init(
para_bg.view(1, -1, 1, 1).repeat(1, 1, h, w), gt)
elif cfg.coord_init.type == 'random':
pos_init_method = random_coord_init([h, w])
else:
raise ValueError
lrlambda_f = linear_decay_lrlambda_f(cfg.num_iter, 0.4)
optim_schedular_dict = {}
for path_idx, pathn in enumerate(path_schedule):
loss_list = []
print("=> Adding [{}] paths, [{}] ...".format(pathn, cfg.seginit.type))
pathn_record.append(pathn)
pathn_record_str = '-'.join([str(i) for i in pathn_record])
# initialize new shapes related stuffs.
if cfg.trainable.stroke:
shapes, shape_groups, point_var, color_var, stroke_width_var, stroke_color_var = init_shapes(
pathn, cfg.num_segments, (h, w),
cfg.seginit, len(shapes_record),
pos_init_method,
trainable_stroke=True,
gt=gt, )
para_stroke_width[path_idx] = stroke_width_var
para_stroke_color[path_idx] = stroke_color_var
else:
shapes, shape_groups, point_var, color_var = init_shapes(
pathn, cfg.num_segments, (h, w),
cfg.seginit, len(shapes_record),
pos_init_method,
trainable_stroke=False,
gt=gt, )
shapes_record += shapes
shape_groups_record += shape_groups
if cfg.save.init:
filename = os.path.join(
cfg.experiment_dir, "svg-init",
"{}-init.svg".format(pathn_record_str))
check_and_create_dir(filename)
pydiffvg.save_svg(
filename, w, h,
shapes_record, shape_groups_record)
para = {}
if (cfg.trainable.bg) and (path_idx == 0):
para['bg'] = [para_bg]
para['point'] = point_var
para['color'] = color_var
if cfg.trainable.stroke:
para['stroke_width'] = stroke_width_var
para['stroke_color'] = stroke_color_var
pg = [{'params' : para[ki], 'lr' : cfg.lr_base[ki]} for ki in sorted(para.keys())]
optim = torch.optim.Adam(pg)
if cfg.trainable.record:
scheduler = LambdaLR(
optim, lr_lambda=lrlambda_f, last_epoch=-1)
else:
scheduler = LambdaLR(
optim, lr_lambda=lrlambda_f, last_epoch=cfg.num_iter)
optim_schedular_dict[path_idx] = (optim, scheduler)
# Inner loop training
t_range = tqdm(range(cfg.num_iter))
for t in t_range:
for _, (optim, _) in optim_schedular_dict.items():
optim.zero_grad()
# Forward pass: render the image.
scene_args = pydiffvg.RenderFunction.serialize_scene(
w, h, shapes_record, shape_groups_record)
img = render(w, h, 2, 2, t, None, *scene_args)
# Compose img with white background
img = img[:, :, 3:4] * img[:, :, :3] + \
para_bg * (1 - img[:, :, 3:4])
if cfg.save.video:
filename = os.path.join(
cfg.experiment_dir, "video-png",
"{}-iter{}.png".format(pathn_record_str, t))
check_and_create_dir(filename)
if cfg.use_ycrcb:
imshow = ycrcb_conversion(
img, format='[2D x 3]', reverse=True).detach().cpu()
else:
imshow = img.detach().cpu()
pydiffvg.imwrite(imshow, filename, gamma=gamma)
x = img.unsqueeze(0).permute(0, 3, 1, 2) # HWC -> NCHW
if cfg.use_ycrcb:
color_reweight = torch.FloatTensor([255/219, 255/224, 255/255]).to(device)
loss = ((x-gt)*(color_reweight.view(1, -1, 1, 1)))**2
else:
loss = ((x-gt)**2)
if cfg.loss.use_l1_loss:
loss = abs(x-gt)
if cfg.loss.use_distance_weighted_loss:
if cfg.use_ycrcb:
raise ValueError
shapes_forsdf = copy.deepcopy(shapes)
shape_groups_forsdf = copy.deepcopy(shape_groups)
for si in shapes_forsdf:
si.stroke_width = torch.FloatTensor([0]).to(device)
for sg_idx, sgi in enumerate(shape_groups_forsdf):
sgi.fill_color = torch.FloatTensor([1, 1, 1, 1]).to(device)
sgi.shape_ids = torch.LongTensor([sg_idx]).to(device)
sargs_forsdf = pydiffvg.RenderFunction.serialize_scene(
w, h, shapes_forsdf, shape_groups_forsdf)
with torch.no_grad():
im_forsdf = render(w, h, 2, 2, 0, None, *sargs_forsdf)
# use alpha channel is a trick to get 0-1 image
im_forsdf = (im_forsdf[:, :, 3]).detach().cpu().numpy()
loss_weight = get_sdf(im_forsdf, normalize='to1')
loss_weight += loss_weight_keep
loss_weight = np.clip(loss_weight, 0, 1)
loss_weight = torch.FloatTensor(loss_weight).to(device)
if cfg.save.loss:
save_loss = loss.squeeze(dim=0).mean(dim=0,keepdim=False).cpu().detach().numpy()
save_weight = loss_weight.cpu().detach().numpy()
save_weighted_loss = save_loss*save_weight
# normalize to [0,1]
save_loss = (save_loss - np.min(save_loss))/np.ptp(save_loss)
save_weight = (save_weight - np.min(save_weight))/np.ptp(save_weight)
save_weighted_loss = (save_weighted_loss - np.min(save_weighted_loss))/np.ptp(save_weighted_loss)
# save
plt.imshow(save_loss, cmap='Reds')
plt.axis('off')
# plt.colorbar()
filename = os.path.join(cfg.experiment_dir, "loss", "{}-iter{}-mseloss.png".format(pathn_record_str, t))
check_and_create_dir(filename)
plt.savefig(filename, dpi=800)
plt.close()
plt.imshow(save_weight, cmap='Greys')
plt.axis('off')
# plt.colorbar()
filename = os.path.join(cfg.experiment_dir, "loss", "{}-iter{}-sdfweight.png".format(pathn_record_str, t))
plt.savefig(filename, dpi=800)
plt.close()
plt.imshow(save_weighted_loss, cmap='Reds')
plt.axis('off')
# plt.colorbar()
filename = os.path.join(cfg.experiment_dir, "loss", "{}-iter{}-weightedloss.png".format(pathn_record_str, t))
plt.savefig(filename, dpi=800)
plt.close()
if loss_weight is None:
loss = loss.sum(1).mean()
else:
loss = (loss.sum(1)*loss_weight).mean()
# if (cfg.loss.bis_loss_weight is not None) and (cfg.loss.bis_loss_weight > 0):
# loss_bis = bezier_intersection_loss(point_var[0]) * cfg.loss.bis_loss_weight
# loss = loss + loss_bis
if (cfg.loss.xing_loss_weight is not None) \
and (cfg.loss.xing_loss_weight > 0):
loss_xing = xing_loss(point_var) * cfg.loss.xing_loss_weight
loss = loss + loss_xing
loss_list.append(loss.item())
t_range.set_postfix({'loss': loss.item()})
loss.backward()
# step
for _, (optim, scheduler) in optim_schedular_dict.items():
optim.step()
scheduler.step()
for group in shape_groups_record:
group.fill_color.data.clamp_(0.0, 1.0)
if cfg.loss.use_distance_weighted_loss:
loss_weight_keep = loss_weight.detach().cpu().numpy() * 1
if not cfg.trainable.record:
for _, pi in pg.items():
for ppi in pi:
pi.require_grad = False
optim_schedular_dict = {}
if cfg.save.image:
filename = os.path.join(
cfg.experiment_dir, "demo-png", "{}.png".format(pathn_record_str))
check_and_create_dir(filename)
if cfg.use_ycrcb:
imshow = ycrcb_conversion(
img, format='[2D x 3]', reverse=True).detach().cpu()
else:
imshow = img.detach().cpu()
pydiffvg.imwrite(imshow, filename, gamma=gamma)
if cfg.save.output:
filename = os.path.join(
cfg.experiment_dir, "output-svg", "{}.svg".format(pathn_record_str))
check_and_create_dir(filename)
pydiffvg.save_svg(filename, w, h, shapes_record, shape_groups_record)
loss_matrix.append(loss_list)
# calculate the pixel loss
# pixel_loss = ((x-gt)**2).sum(dim=1, keepdim=True).sqrt_() # [N,1,H, W]
# region_loss = adaptive_avg_pool2d(pixel_loss, cfg.region_loss_pool_size)
# loss_weight = torch.softmax(region_loss.reshape(1, 1, -1), dim=-1)\
# .reshape_as(region_loss)
pos_init_method = naive_coord_init(x, gt)
if cfg.coord_init.type == 'naive':
pos_init_method = naive_coord_init(x, gt)
elif cfg.coord_init.type == 'sparse':
pos_init_method = sparse_coord_init(x, gt)
elif cfg.coord_init.type == 'random':
pos_init_method = random_coord_init([h, w])
else:
raise ValueError
if cfg.save.video:
print("saving iteration video...")
img_array = []
for ii in range(0, cfg.num_iter):
filename = os.path.join(
cfg.experiment_dir, "video-png",
"{}-iter{}.png".format(pathn_record_str, ii))
img = cv2.imread(filename)
# cv2.putText(
# img, "Path:{} \nIteration:{}".format(pathn_record_str, ii),
# (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
img_array.append(img)
videoname = os.path.join(
cfg.experiment_dir, "video-avi",
"{}.avi".format(pathn_record_str))
check_and_create_dir(videoname)
out = cv2.VideoWriter(
videoname,
# cv2.VideoWriter_fourcc(*'mp4v'),
cv2.VideoWriter_fourcc(*'FFV1'),
20.0, (w, h))
for iii in range(len(img_array)):
out.write(img_array[iii])
out.release()
# shutil.rmtree(os.path.join(cfg.experiment_dir, "video-png"))
print("The last loss is: {}".format(loss.item()))
if __name__ == "__main__":
###############
# make config #
###############
cfg_arg = parse_args()
with open(cfg_arg.config, 'r') as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
cfg_default = edict(cfg['default'])
cfg = edict(cfg[cfg_arg.experiment])
cfg.update(cfg_default)
cfg.update(cfg_arg)
cfg.exid = get_experiment_id(cfg.debug)
cfg.experiment_dir = \
osp.join(cfg.log_dir, '{}_{}'.format(cfg.exid, '_'.join(cfg.signature)))
configfile = osp.join(cfg.experiment_dir, 'config.yaml')
check_and_create_dir(configfile)
with open(osp.join(configfile), 'w') as f:
yaml.dump(edict_2_dict(cfg), f)
# Use GPU if available
pydiffvg.set_use_gpu(torch.cuda.is_available())
device = pydiffvg.get_device()
gt = np.array(PIL.Image.open(cfg.target))
print(f"Input image shape is: {gt.shape}")
if len(gt.shape) == 2:
print("Converting the gray-scale image to RGB.")
gt = gt.unsqueeze(dim=-1).repeat(1,1,3)
if gt.shape[2] == 4:
print("Input image includes alpha channel, simply dropout alpha channel.")
gt = gt[:, :, :3]
gt = (gt/255).astype(np.float32)
gt = torch.FloatTensor(gt).permute(2, 0, 1)[None].to(device)
if cfg.use_ycrcb:
gt = ycrcb_conversion(gt)
h, w = gt.shape[2:]
path_schedule = get_path_schedule(**cfg.path_schedule)
if cfg.seed is not None:
random.seed(cfg.seed)
npr.seed(cfg.seed)
torch.manual_seed(cfg.seed)
render = pydiffvg.RenderFunction.apply
shapes_record, shape_groups_record = [], []
region_loss = None
loss_matrix = []
para_point, para_color = {}, {}
if cfg.trainable.stroke:
para_stroke_width, para_stroke_color = {}, {}
pathn_record = []
# Background
if cfg.trainable.bg:
# meancolor = gt.mean([2, 3])[0]
para_bg = torch.tensor([1., 1., 1.], requires_grad=True, device=device)
else:
if cfg.use_ycrcb:
para_bg = torch.tensor([219/255, 0, 0], requires_grad=False, device=device)
else:
para_bg = torch.tensor([1., 1., 1.], requires_grad=False, device=device)
##################
# start_training #
##################
loss_weight = None
loss_weight_keep = 0
if cfg.coord_init.type == 'naive':
pos_init_method = naive_coord_init(
para_bg.view(1, -1, 1, 1).repeat(1, 1, h, w), gt)
elif cfg.coord_init.type == 'sparse':
pos_init_method = sparse_coord_init(
para_bg.view(1, -1, 1, 1).repeat(1, 1, h, w), gt)
elif cfg.coord_init.type == 'random':
pos_init_method = random_coord_init([h, w])
else:
raise ValueError
lrlambda_f = linear_decay_lrlambda_f(cfg.num_iter, 0.4)
optim_schedular_dict = {}
for path_idx, pathn in enumerate(path_schedule):
loss_list = []
print("=> Adding [{}] paths, [{}] ...".format(pathn, cfg.seginit.type))
pathn_record.append(pathn)
pathn_record_str = '-'.join([str(i) for i in pathn_record])
# initialize new shapes related stuffs.
if cfg.trainable.stroke:
shapes, shape_groups, point_var, color_var, stroke_width_var, stroke_color_var = init_shapes(
pathn, cfg.num_segments, (h, w),
cfg.seginit, len(shapes_record),
pos_init_method,
trainable_stroke=True,
gt=gt, )
para_stroke_width[path_idx] = stroke_width_var
para_stroke_color[path_idx] = stroke_color_var
else:
shapes, shape_groups, point_var, color_var = init_shapes(
pathn, cfg.num_segments, (h, w),
cfg.seginit, len(shapes_record),
pos_init_method,
trainable_stroke=False,
gt=gt, )
shapes_record += shapes
shape_groups_record += shape_groups
if cfg.save.init:
filename = os.path.join(
cfg.experiment_dir, "svg-init",
"{}-init.svg".format(pathn_record_str))
check_and_create_dir(filename)
pydiffvg.save_svg(
filename, w, h,
shapes_record, shape_groups_record)
para = {}
if (cfg.trainable.bg) and (path_idx == 0):
para['bg'] = [para_bg]
para['point'] = point_var
para['color'] = color_var
if cfg.trainable.stroke:
para['stroke_width'] = stroke_width_var
para['stroke_color'] = stroke_color_var
pg = [{'params' : para[ki], 'lr' : cfg.lr_base[ki]} for ki in sorted(para.keys())]
optim = torch.optim.Adam(pg)
if cfg.trainable.record:
scheduler = LambdaLR(
optim, lr_lambda=lrlambda_f, last_epoch=-1)
else:
scheduler = LambdaLR(
optim, lr_lambda=lrlambda_f, last_epoch=cfg.num_iter)
optim_schedular_dict[path_idx] = (optim, scheduler)
# Inner loop training
t_range = tqdm(range(cfg.num_iter))
for t in t_range:
for _, (optim, _) in optim_schedular_dict.items():
optim.zero_grad()
# Forward pass: render the image.
scene_args = pydiffvg.RenderFunction.serialize_scene(
w, h, shapes_record, shape_groups_record)
img = render(w, h, 2, 2, t, None, *scene_args)
# Compose img with white background
img = img[:, :, 3:4] * img[:, :, :3] + \
para_bg * (1 - img[:, :, 3:4])
if cfg.save.video:
filename = os.path.join(
cfg.experiment_dir, "video-png",
"{}-iter{}.png".format(pathn_record_str, t))
check_and_create_dir(filename)
if cfg.use_ycrcb:
imshow = ycrcb_conversion(
img, format='[2D x 3]', reverse=True).detach().cpu()
else:
imshow = img.detach().cpu()
pydiffvg.imwrite(imshow, filename, gamma=gamma)
x = img.unsqueeze(0).permute(0, 3, 1, 2) # HWC -> NCHW
if cfg.use_ycrcb:
color_reweight = torch.FloatTensor([255/219, 255/224, 255/255]).to(device)
loss = ((x-gt)*(color_reweight.view(1, -1, 1, 1)))**2
else:
loss = ((x-gt)**2)
if cfg.loss.use_l1_loss:
loss = abs(x-gt)
if cfg.loss.use_distance_weighted_loss:
if cfg.use_ycrcb:
raise ValueError
shapes_forsdf = copy.deepcopy(shapes)
shape_groups_forsdf = copy.deepcopy(shape_groups)
for si in shapes_forsdf:
si.stroke_width = torch.FloatTensor([0]).to(device)
for sg_idx, sgi in enumerate(shape_groups_forsdf):
sgi.fill_color = torch.FloatTensor([1, 1, 1, 1]).to(device)
sgi.shape_ids = torch.LongTensor([sg_idx]).to(device)
sargs_forsdf = pydiffvg.RenderFunction.serialize_scene(
w, h, shapes_forsdf, shape_groups_forsdf)
with torch.no_grad():
im_forsdf = render(w, h, 2, 2, 0, None, *sargs_forsdf)
# use alpha channel is a trick to get 0-1 image
im_forsdf = (im_forsdf[:, :, 3]).detach().cpu().numpy()
loss_weight = get_sdf(im_forsdf, normalize='to1')
loss_weight += loss_weight_keep
loss_weight = np.clip(loss_weight, 0, 1)
loss_weight = torch.FloatTensor(loss_weight).to(device)
if cfg.save.loss:
save_loss = loss.squeeze(dim=0).mean(dim=0,keepdim=False).cpu().detach().numpy()
save_weight = loss_weight.cpu().detach().numpy()
save_weighted_loss = save_loss*save_weight
# normalize to [0,1]
save_loss = (save_loss - np.min(save_loss))/np.ptp(save_loss)
save_weight = (save_weight - np.min(save_weight))/np.ptp(save_weight)
save_weighted_loss = (save_weighted_loss - np.min(save_weighted_loss))/np.ptp(save_weighted_loss)
# save
plt.imshow(save_loss, cmap='Reds')
plt.axis('off')
# plt.colorbar()
filename = os.path.join(cfg.experiment_dir, "loss", "{}-iter{}-mseloss.png".format(pathn_record_str, t))
check_and_create_dir(filename)
plt.savefig(filename, dpi=800)
plt.close()
plt.imshow(save_weight, cmap='Greys')
plt.axis('off')
# plt.colorbar()
filename = os.path.join(cfg.experiment_dir, "loss", "{}-iter{}-sdfweight.png".format(pathn_record_str, t))
plt.savefig(filename, dpi=800)
plt.close()
plt.imshow(save_weighted_loss, cmap='Reds')
plt.axis('off')
# plt.colorbar()
filename = os.path.join(cfg.experiment_dir, "loss", "{}-iter{}-weightedloss.png".format(pathn_record_str, t))
plt.savefig(filename, dpi=800)
plt.close()
if loss_weight is None:
loss = loss.sum(1).mean()
else:
loss = (loss.sum(1)*loss_weight).mean()
# if (cfg.loss.bis_loss_weight is not None) and (cfg.loss.bis_loss_weight > 0):
# loss_bis = bezier_intersection_loss(point_var[0]) * cfg.loss.bis_loss_weight
# loss = loss + loss_bis
if (cfg.loss.xing_loss_weight is not None) \
and (cfg.loss.xing_loss_weight > 0):
loss_xing = xing_loss(point_var) * cfg.loss.xing_loss_weight
loss = loss + loss_xing
loss_list.append(loss.item())
t_range.set_postfix({'loss': loss.item()})
loss.backward()
# step
for _, (optim, scheduler) in optim_schedular_dict.items():
optim.step()
scheduler.step()
for group in shape_groups_record:
group.fill_color.data.clamp_(0.0, 1.0)
if cfg.loss.use_distance_weighted_loss:
loss_weight_keep = loss_weight.detach().cpu().numpy() * 1
if not cfg.trainable.record:
for _, pi in pg.items():
for ppi in pi:
pi.require_grad = False
optim_schedular_dict = {}
if cfg.save.image:
filename = os.path.join(
cfg.experiment_dir, "demo-png", "{}.png".format(pathn_record_str))
check_and_create_dir(filename)
if cfg.use_ycrcb:
imshow = ycrcb_conversion(
img, format='[2D x 3]', reverse=True).detach().cpu()
else:
imshow = img.detach().cpu()
pydiffvg.imwrite(imshow, filename, gamma=gamma)
if cfg.save.output:
filename = os.path.join(
cfg.experiment_dir, "output-svg", "{}.svg".format(pathn_record_str))
check_and_create_dir(filename)
pydiffvg.save_svg(filename, w, h, shapes_record, shape_groups_record)
loss_matrix.append(loss_list)
# calculate the pixel loss
# pixel_loss = ((x-gt)**2).sum(dim=1, keepdim=True).sqrt_() # [N,1,H, W]
# region_loss = adaptive_avg_pool2d(pixel_loss, cfg.region_loss_pool_size)
# loss_weight = torch.softmax(region_loss.reshape(1, 1, -1), dim=-1)\
# .reshape_as(region_loss)
pos_init_method = naive_coord_init(x, gt)
if cfg.coord_init.type == 'naive':
pos_init_method = naive_coord_init(x, gt)
elif cfg.coord_init.type == 'sparse':
pos_init_method = sparse_coord_init(x, gt)
elif cfg.coord_init.type == 'random':
pos_init_method = random_coord_init([h, w])
else:
raise ValueError
if cfg.save.video:
print("saving iteration video...")
img_array = []
for ii in range(0, cfg.num_iter):
filename = os.path.join(
cfg.experiment_dir, "video-png",
"{}-iter{}.png".format(pathn_record_str, ii))
img = cv2.imread(filename)
# cv2.putText(
# img, "Path:{} \nIteration:{}".format(pathn_record_str, ii),
# (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
img_array.append(img)
videoname = os.path.join(
cfg.experiment_dir, "video-avi",
"{}.avi".format(pathn_record_str))
check_and_create_dir(videoname)
out = cv2.VideoWriter(
videoname,
# cv2.VideoWriter_fourcc(*'mp4v'),
cv2.VideoWriter_fourcc(*'FFV1'),
20.0, (w, h))
for iii in range(len(img_array)):
out.write(img_array[iii])
out.release()
# shutil.rmtree(os.path.join(cfg.experiment_dir, "video-png"))
print("The last loss is: {}".format(loss.item()))
|