File size: 27,427 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
#! /usr/bin/env python
# -*- coding: utf-8 -*-

###############################################################################
# Copyright (c) 2012-7 Bryce Adelstein Lelbach aka wash <brycelelbach@gmail.com>
#
# Distributed under the Boost Software License, Version 1.0. (See accompanying
# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
###############################################################################

###############################################################################
# Copyright (c) 2018 NVIDIA Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################

# XXX Put code shared with `compare_benchmark_results.py` in a common place.

# XXX Relative uncertainty.

from sys import exit, stdout

from os.path import splitext

from itertools import imap # Lazy map.

from math import sqrt, log10, floor

from collections import deque

from argparse import ArgumentParser as argument_parser

from csv import DictReader as csv_dict_reader
from csv import DictWriter as csv_dict_writer

from re import compile as regex_compile

###############################################################################

def unpack_tuple(f):
  """Return a unary function that calls `f` with its argument unpacked."""
  return lambda args: f(*iter(args))

def strip_dict(d):
  """Strip leading and trailing whitespace from all keys and values in `d`."""
  d.update({key: value.strip() for (key, value) in d.items()})

def merge_dicts(d0, d1):
  """Create a new `dict` that is the union of `dict`s `d0` and `d1`."""
  d = d0.copy()
  d.update(d1)
  return d

def strip_list(l):
  """Strip leading and trailing whitespace from all values in `l`."""
  for i, value in enumerate(l): l[i] = value.strip()

###############################################################################

def int_or_float(x):
  """Convert `x` to either `int` or `float`, preferring `int`.

  Raises:
    ValueError : If `x` is not convertible to either `int` or `float`
  """
  try:
    return int(x)
  except ValueError:
    return float(x)

def try_int_or_float(x):
  """Try to convert `x` to either `int` or `float`, preferring `int`. `x` is
  returned unmodified if conversion fails.
  """
  try:
    return int_or_float(x)
  except ValueError:
    return x

###############################################################################

def find_significant_digit(x):
  """Return the significant digit of the number x. The result is the number of
  digits after the decimal place to round to (negative numbers indicate rounding
  before the decimal place)."""
  if x == 0: return 0
  return -int(floor(log10(abs(x))))

def round_with_int_conversion(x, ndigits = None):
  """Rounds `x` to `ndigits` after the the decimal place. If `ndigits` is less
  than 1, convert the result to `int`. If `ndigits` is `None`, the significant
  digit of `x` is used."""
  if ndigits is None: ndigits = find_significant_digit(x)
  x_rounded = round(x, ndigits)
  return int(x_rounded) if ndigits < 1 else x_rounded

###############################################################################

class measured_variable(object):
  """A meta-variable representing measured data. It is composed of three raw
  variables plus units meta-data.

  Attributes:
    quantity (`str`) :
      Name of the quantity variable of this object.
    uncertainty (`str`) :
      Name of the uncertainty variable of this object.
    sample_size (`str`) :
      Name of the sample size variable of this object.
    units (units class or `None`) :
      The units the value is measured in.
  """

  def __init__(self, quantity, uncertainty, sample_size, units = None):
    self.quantity    = quantity
    self.uncertainty = uncertainty
    self.sample_size = sample_size
    self.units       = units

  def as_tuple(self):
    return (self.quantity, self.uncertainty, self.sample_size, self.units)

  def __iter__(self):
    return iter(self.as_tuple())

  def __str__(self):
    return str(self.as_tuple())

  def __repr__(self):
    return str(self)

class measured_value(object):
  """An object that represents a value determined by multiple measurements.

  Attributes:
    quantity (scalar) :
      The quantity of the value, e.g. the arithmetic mean.
    uncertainty (scalar) :
      The measurement uncertainty, e.g. the sample standard deviation.
    sample_size (`int`) :
      The number of observations contributing to the value.
    units (units class or `None`) :
      The units the value is measured in.
  """

  def __init__(self, quantity, uncertainty, sample_size = 1, units = None):
    self.quantity    = quantity
    self.uncertainty = uncertainty
    self.sample_size = sample_size
    self.units       = units

  def as_tuple(self):
    return (self.quantity, self.uncertainty, self.sample_size, self.units)

  def __iter__(self):
    return iter(self.as_tuple())

  def __str__(self):
    return str(self.as_tuple())

  def __repr__(self):
    return str(self)

###############################################################################

def arithmetic_mean(X):
  """Computes the arithmetic mean of the sequence `X`.

  Let:

    * `n = len(X)`.
    * `u` denote the arithmetic mean of `X`.

  .. math::

    u = \frac{\sum_{i = 0}^{n - 1} X_i}{n}
  """
  return sum(X) / len(X)

def sample_variance(X, u = None):
  """Computes the sample variance of the sequence `X`.

  Let:

    * `n = len(X)`.
    * `u` denote the arithmetic mean of `X`.
    * `s` denote the sample standard deviation of `X`.

  .. math::

    v = \frac{\sum_{i = 0}^{n - 1} (X_i - u)^2}{n - 1}

  Args:
    X (`Iterable`) : The sequence of values.
    u (number)     : The arithmetic mean of `X`.
  """
  if u is None: u = arithmetic_mean(X)
  return sum(imap(lambda X_i: (X_i - u) ** 2, X)) / (len(X) - 1)
 
def sample_standard_deviation(X, u = None, v = None):
  """Computes the sample standard deviation of the sequence `X`.

  Let:

    * `n = len(X)`.
    * `u` denote the arithmetic mean of `X`.
    * `v` denote the sample variance of `X`.
    * `s` denote the sample standard deviation of `X`.

  .. math::

    s &= \sqrt{v}
      &= \sqrt{\frac{\sum_{i = 0}^{n - 1} (X_i - u)^2}{n - 1}}

  Args:
    X (`Iterable`) : The sequence of values.
    u (number)     : The arithmetic mean of `X`.
    v (number)     : The sample variance of `X`.
  """
  if u is None: u = arithmetic_mean(X)
  if v is None: v = sample_variance(X, u)
  return sqrt(v)

def combine_sample_size(As):
  """Computes the combined sample variance of a group of `measured_value`s.

  Let:

    * `g = len(As)`.
    * `n_i = As[i].samples`.
    * `n` denote the combined sample size of `As`.

  .. math::

    n = \sum{i = 0}^{g - 1} n_i
  """
  return sum(imap(unpack_tuple(lambda u_i, s_i, n_i, t_i: n_i), As))

def combine_arithmetic_mean(As, n = None):
  """Computes the combined arithmetic mean of a group of `measured_value`s.

  Let:

    * `g = len(As)`.
    * `u_i = As[i].quantity`.
    * `n_i = As[i].samples`.
    * `n` denote the combined sample size of `As`.
    * `u` denote the arithmetic mean of the quantities of `As`.

  .. math::

    u = \frac{\sum{i = 0}^{g - 1} n_i u_i}{n}
  """
  if n is None: n = combine_sample_size(As)
  return sum(imap(unpack_tuple(lambda u_i, s_i, n_i, t_i: n_i * u_i), As)) / n
  
def combine_sample_variance(As, n = None, u = None):
  """Computes the combined sample variance of a group of `measured_value`s.

  Let:

    * `g = len(As)`.
    * `u_i = As[i].quantity`.
    * `s_i = As[i].uncertainty`.
    * `n_i = As[i].samples`.
    * `n` denote the combined sample size of `As`.
    * `u` denote the arithmetic mean of the quantities of `As`.
    * `v` denote the sample variance of `X`.

  .. math::

    v = \frac{(\sum_{i = 0}^{g - 1} n_i (u_i - u)^2 + s_i^2 (n_i - 1))}{n - 1}

  Args:
    As (`Iterable` of `measured_value`s) : The sequence of values.
    n (number)                           : The combined sample sizes of `As`.
    u (number)                           : The combined arithmetic mean of `As`.
  """
  if n <= 1: return 0
  if n is None: n = combine_sample_size(As)
  if u is None: u = combine_arithmetic_mean(As, n)
  return sum(imap(unpack_tuple(
    lambda u_i, s_i, n_i, t_i: n_i * (u_i - u) ** 2 + (s_i ** 2) * (n_i - 1)
  ), As)) / (n - 1)

def combine_sample_standard_deviation(As, n = None, u = None, v = None):
  """Computes the combined sample standard deviation of a group of
  `measured_value`s.

  Let:

    * `g = len(As)`.
    * `u_i = As[i].quantity`.
    * `s_i = As[i].uncertainty`.
    * `n_i = As[i].samples`.
    * `n` denote the combined sample size of `As`.
    * `u` denote the arithmetic mean of the quantities of `As`.
    * `v` denote the sample variance of `X`.
    * `s` denote the sample standard deviation of `X`.

  .. math::

    s &= \sqrt{v}
      &= \sqrt{\frac{(\sum_{i = 0}^{g - 1} n_i (u_i - u)^2 + s_i^2 (n_i - 1))}{n - 1}}

  Args:
    As (`Iterable` of `measured_value`s) : The sequence of values.
    n (number)                           : The combined sample sizes of `As`.
    u (number)                           : The combined arithmetic mean of `As`.
    v (number)                           : The combined sample variance of `As`.
  """
  if n <= 1: return 0
  if n is None: n = combine_sample_size(As)
  if u is None: u = combine_arithmetic_mean(As, n)
  if v is None: v = combine_sample_variance(As, n, u)
  return sqrt(v)

###############################################################################

def process_program_arguments():
  ap = argument_parser(
    description = (
      "Aggregates the results of multiple runs of benchmark results stored in "
      "CSV format."
    )
  )

  ap.add_argument(
    "-d", "--dependent-variable",
    help = ("Treat the specified three variables as a dependent variable. The "
            "1st variable is the measured quantity, the 2nd is the uncertainty "
            "of the measurement and the 3rd is the sample size. The defaults "
            "are the dependent variables of Thrust's benchmark suite. May be "
            "specified multiple times."),
    action = "append", type = str, dest = "dependent_variables",
    metavar = "QUANTITY,UNCERTAINTY,SAMPLES"
  )

  ap.add_argument(
    "-p", "--preserve-whitespace",
    help = ("Don't trim leading and trailing whitespace from each CSV cell."),
    action = "store_true", default = False
  )

  ap.add_argument(
    "-o", "--output-file",
    help = ("The file that results are written to. If `-`, results are "
            "written to stdout."),
    action = "store", type = str, default = "-",
    metavar = "OUTPUT"
  )

  ap.add_argument(
    "input_files",
    help = ("Input CSV files. The first two rows should be a header. The 1st "
            "header row specifies the name of each variable, and the 2nd "
            "header row specifies the units for that variable."),
    type = str, nargs = "+",
    metavar = "INPUTS"
  )

  return ap.parse_args()

###############################################################################

def filter_comments(f, s = "#"):
  """Return an iterator to the file `f` which filters out all lines beginning
  with `s`."""
  return filter(lambda line: not line.startswith(s), f)

###############################################################################

class io_manager(object):
  """Manages I/O operations and represents the input data as an `Iterable`
  sequence of `dict`s.

  It is `Iterable` and an `Iterator`. It can be used with `with`.

  Attributes:
    preserve_whitespace (`bool`) :
      If `False`, leading and trailing whitespace is stripped from each CSV cell.
    writer (`csv_dict_writer`) :
      CSV writer object that the output is written to.
    output_file (`file` or `stdout`) :
      The output `file` object.
    readers (`list` of `csv_dict_reader`s) :
      List of input files as CSV reader objects.
    input_files (list of `file`s) :
      List of input `file` objects.
    variable_names (`list` of `str`s) :
      Names of the variables, in order. 
    variable_units (`list` of `str`s) :
      Units of the variables, in order. 
  """

  def __init__(self, input_files, output_file, preserve_whitespace = True):
    """Read input files and open the output file and construct a new `io_manager`
    object.

    If `preserve_whitespace` is `False`, leading and trailing whitespace is
    stripped from each CSV cell.

    Raises
      AssertionError :
        If `len(input_files) <= 0` or `type(preserve_whitespace) != bool`.
    """
    assert len(input_files) > 0, "No input files provided."

    assert type(preserve_whitespace) == bool

    self.preserve_whitespace = preserve_whitespace

    self.readers = deque()

    self.variable_names = None
    self.variable_units = None

    self.input_files = deque()

    for input_file in input_files:
      input_file_object = open(input_file)
      reader = csv_dict_reader(filter_comments(input_file_object))

      if not self.preserve_whitespace:
        strip_list(reader.fieldnames)

      if self.variable_names is None:
        self.variable_names = reader.fieldnames
      else:
        # Make sure all inputs have the same schema.
        assert self.variable_names == reader.fieldnames,                      \
          "Input file (`" + input_file + "`) variable schema `"             + \
          str(reader.fieldnames) + "` does not match the variable schema `" + \
          str(self.variable_names) + "`."

      # Consume the next row, which should be the second line of the header.
      variable_units = reader.next()

      if not self.preserve_whitespace:
        strip_dict(variable_units)

      if self.variable_units is None:
        self.variable_units = variable_units
      else:
        # Make sure all inputs have the same units schema.
        assert self.variable_units == variable_units,                         \
          "Input file (`" + input_file + "`) units schema `"                + \
          str(variable_units) + "` does not match the units schema `"       + \
          str(self.variable_units) + "`."

      self.readers.append(reader)
      self.input_files.append(input_file_object)
 
    if   output_file == "-": # Output to stdout.
      self.output_file = stdout
    else:                    # Output to user-specified file.
      self.output_file = open(output_file, "w")

    self.writer = csv_dict_writer(
      self.output_file, fieldnames = self.variable_names
    )

  def __enter__(self):
    """Called upon entering a `with` statement."""
    return self

  def __exit__(self, *args):
    """Called upon exiting a `with` statement."""
    if   self.output_file is stdout:
      self.output_file = None
    elif self.output_file is not None:
      self.output_file.__exit__(*args)

    for input_file in self.input_files:
      input_file.__exit__(*args)

  #############################################################################
  # Input Stream.

  def __iter__(self):
    """Return an iterator to the input sequence.

    This is a requirement for the `Iterable` protocol.
    """
    return self

  def next(self):
    """Consume and return the next record (a `dict` representing a CSV row) in
    the input.

    This is a requirement for the `Iterator` protocol.

    Raises:
      StopIteration : If there is no more input.
    """
    if len(self.readers) == 0:
      raise StopIteration()

    try:
      row = self.readers[0].next()
      if not self.preserve_whitespace: strip_dict(row)
      return row
    except StopIteration:
      # The current reader is empty, so pop it, pop it's input file, close the
      # input file, and then call ourselves again. 
      self.readers.popleft()
      self.input_files.popleft().close()
      return self.next()

  #############################################################################
  # Output.

  def write_header(self):
    """Write the header for the output CSV file."""
    # Write the first line of the header.
    self.writer.writeheader()

    # Write the second line of the header.
    self.writer.writerow(self.variable_units)

  def write(self, d):
    """Write a record (a `dict`) to the output CSV file."""
    self.writer.writerow(d)

###############################################################################

class dependent_variable_parser(object):
  """Parses a `--dependent-variable=AVG,STDEV,TRIALS` command line argument."""

  #############################################################################
  # Grammar

  # Parse a variable_name.
  variable_name_rule = r'[^,]+'

  # Parse a variable classification.        
  dependent_variable_rule = r'(' + variable_name_rule + r')'   \
                          + r','                               \
                          + r'(' + variable_name_rule + r')'   \
                          + r','                               \
                          + r'(' + variable_name_rule + r')'

  engine = regex_compile(dependent_variable_rule)

  #############################################################################

  def __call__(self, s):
    """Parses the string `s` with the form "AVG,STDEV,TRIALS".

    Returns:
      A `measured_variable`. 

    Raises:
      AssertionError : If parsing fails.
    """

    match = self.engine.match(s)

    assert match is not None,                                          \
      "Dependent variable (-d) `" +s+ "` is invalid, the format is " + \
      "`AVG,STDEV,TRIALS`."

    return measured_variable(match.group(1), match.group(2), match.group(3))

###############################################################################

class record_aggregator(object):
  """Consumes and combines records and represents the result as an `Iterable`
  sequence of `dict`s.

  It is `Iterable` and an `Iterator`.

  Attributes:
    dependent_variables (`list` of `measured_variable`s) :
      A list of dependent variables provided on the command line.
    dataset (`dict`) :
      A mapping of distinguishing (e.g. control + independent) values (`tuple`s
      of variable-quantity pairs) to `list`s of dependent values (`dict`s from 
      variables to lists of cells).
    in_order_dataset_keys :
      A list of unique dataset keys (e.g. distinguishing variables) in order of
      appearance.
  """

  parse_dependent_variable = dependent_variable_parser()

  def __init__(self, raw_dependent_variables):
    """Parse dependent variables and construct a new `record_aggregator` object.

    Raises:
      AssertionError : If parsing of dependent variables fails.
    """
    self.dependent_variables = []

    if raw_dependent_variables is not None:
      for variable in raw_dependent_variables:
        self.dependent_variables.append(self.parse_dependent_variable(variable))

    self.dataset = {}

    self.in_order_dataset_keys = deque()

  #############################################################################
  # Insertion.

  def append(self, record):
    """Add `record` to the dataset.

    Raises:
      ValueError : If any `str`-to-numeric conversions fail.
    """
    # The distinguishing variables are the control and independent variables.
    # They form the key for each record in the dataset. Records with the same
    # distinguishing variables are treated as observations of the same data
    # point.
    dependent_values = {}

    # To allow the same sample size variable to be used for multiple dependent
    # variables, we don't pop sample size variables until we're done processing
    # all variables.
    sample_size_variables = []

    # Separate the dependent values from the distinguishing variables and
    # perform `str`-to-numeric conversions.
    for variable in self.dependent_variables:
      quantity, uncertainty, sample_size, units = variable.as_tuple()

      dependent_values[quantity]    = [int_or_float(record.pop(quantity))]
      dependent_values[uncertainty] = [int_or_float(record.pop(uncertainty))]
      dependent_values[sample_size] = [int(record[sample_size])]

      sample_size_variables.append(sample_size)

    # Pop sample size variables.
    for sample_size_variable in sample_size_variables:
      # Allowed to fail, as we may have duplicates.
      record.pop(sample_size_variable, None)

    # `dict`s aren't hashable, so create a tuple of key-value pairs.
    distinguishing_values = tuple(record.items())

    if distinguishing_values in self.dataset:
      # These distinguishing values already exist, so get the `dict` they're
      # mapped to, look up each key in `dependent_values` in the `dict`, and
      # add the corresponding quantity in `dependent_values` to the list in the
      # the `dict`.
      for variable, columns in dependent_values.iteritems():
        self.dataset[distinguishing_values][variable] += columns
    else:
      # These distinguishing values aren't in the dataset, so add them and
      # record them in `in_order_dataset_keys`.
      self.dataset[distinguishing_values] = dependent_values
      self.in_order_dataset_keys.append(distinguishing_values)

  #############################################################################
  # Postprocessing.

  def combine_dependent_values(self, dependent_values):
    """Takes a mapping of dependent variables to lists of cells and returns
    a new mapping with the cells combined.

    Raises:
      AssertionError : If class invariants were violated.
    """
    combined_dependent_values = dependent_values.copy()

    for variable in self.dependent_variables:
      quantity, uncertainty, sample_size, units = variable.as_tuple()

      quantities    = dependent_values[quantity]
      uncertainties = dependent_values[uncertainty]
      sample_sizes  = dependent_values[sample_size]

      if type(sample_size) is list:
        # Sample size hasn't been combined yet.
        assert len(quantities)    == len(uncertainties)                       \
           and len(uncertainties) == len(sample_sizes),                       \
          "Length of quantities list `(" + str(len(quantities)) + ")`, "    + \
          "length of uncertainties list `(" + str(len(uncertainties))       + \
          "),` and length of sample sizes list `(" + str(len(sample_sizes)) + \
          ")` are not the same."
      else:
        # Another dependent variable that uses our sample size has combined it
        # already.
        assert len(quantities) == len(uncertainties),                         \
          "Length of quantities list `(" + str(len(quantities)) + ")` and " + \
          "length of uncertainties list `(" + str(len(uncertainties))       + \
          ")` are not the same."

      # Convert the three separate `list`s into one list of `measured_value`s.
      measured_values = []

      for i in range(len(quantities)):
        mv = measured_value(
          quantities[i], uncertainties[i], sample_sizes[i], units
        )

        measured_values.append(mv)

      # Combine the `measured_value`s.
      combined_sample_size = combine_sample_size(
        measured_values
      )

      combined_arithmetic_mean = combine_arithmetic_mean(
        measured_values, combined_sample_size
      )

      combined_sample_standard_deviation = combine_sample_standard_deviation(
        measured_values, combined_sample_size, combined_arithmetic_mean
      )

      # Round the quantity and uncertainty to the significant digit of
      # uncertainty and insert the combined values into the results.
      sigdig = find_significant_digit(combined_sample_standard_deviation)

#      combined_arithmetic_mean = round_with_int_conversion(
#        combined_arithmetic_mean, sigdig
#      )

#      combined_sample_standard_deviation = round_with_int_conversion(
#        combined_sample_standard_deviation, sigdig
#      )

      combined_dependent_values[quantity]    = combined_arithmetic_mean
      combined_dependent_values[uncertainty] = combined_sample_standard_deviation
      combined_dependent_values[sample_size] = combined_sample_size

    return combined_dependent_values

  ############################################################################# 
  # Output Stream.

  def __iter__(self):
    """Return an iterator to the output sequence of separated distinguishing
    variables and dependent variables (a tuple of two `dict`s).

    This is a requirement for the `Iterable` protocol.
    """
    return self

  def records(self):
    """Return an iterator to the output sequence of CSV rows (`dict`s of
    variables to values).
    """
    return imap(unpack_tuple(lambda dist, dep: merge_dicts(dist, dep)), self)

  def next(self):
    """Produce the components of the next output record - a tuple of two
    `dict`s. The first `dict` is a mapping of distinguishing variables to
    distinguishing values, the second `dict` is a mapping of dependent
    variables to combined dependent values. Combining the two dicts forms a
    CSV row suitable for output.

    This is a requirement for the `Iterator` protocol.

    Raises:
      StopIteration  : If there is no more output.
      AssertionError : If class invariants were violated.
    """
    assert len(self.dataset.keys()) == len(self.in_order_dataset_keys),      \
      "Number of dataset keys (`" + str(len(self.dataset.keys()))          + \
      "`) is not equal to the number of keys in the ordering list (`"      + \
      str(len(self.in_order_dataset_keys)) + "`)."

    if len(self.in_order_dataset_keys) == 0:
      raise StopIteration()

    # Get the next set of distinguishing values and convert them to a `dict`.
    raw_distinguishing_values = self.in_order_dataset_keys.popleft()
    distinguishing_values     = dict(raw_distinguishing_values)

    dependent_values = self.dataset.pop(raw_distinguishing_values)

    combined_dependent_values = self.combine_dependent_values(dependent_values)

    return (distinguishing_values, combined_dependent_values)

###############################################################################

args = process_program_arguments()

if args.dependent_variables is None:
  args.dependent_variables = [
    "STL Average Walltime,STL Walltime Uncertainty,STL Trials",
    "STL Average Throughput,STL Throughput Uncertainty,STL Trials",
    "Thrust Average Walltime,Thrust Walltime Uncertainty,Thrust Trials",
    "Thrust Average Throughput,Thrust Throughput Uncertainty,Thrust Trials"
  ]

# Read input files and open the output file.
with io_manager(args.input_files,
                args.output_file,
                args.preserve_whitespace) as iom:
  # Parse dependent variable options.
  ra = record_aggregator(args.dependent_variables)

  # Add all input data to the `record_aggregator`.
  for record in iom:
    ra.append(record)

  iom.write_header()

  # Write combined results out.
  for record in ra.records():
    iom.write(record)