Spaces:
Runtime error
Runtime error
File size: 45,651 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 |
#! /usr/bin/env python
# -*- coding: utf-8 -*-
###############################################################################
# Copyright (c) 2012-7 Bryce Adelstein Lelbach aka wash <brycelelbach@gmail.com>
#
# Distributed under the Boost Software License, Version 1.0. (See accompanying
# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
###############################################################################
###############################################################################
# Copyright (c) 2018 NVIDIA Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
# XXX Put code shared with `combine_benchmark_results.py` in a common place.
# XXX Relative uncertainty.
# XXX Create uncertain value class which is quantity + uncertainty.
from sys import exit, stdout
from os.path import splitext
from itertools import imap # Lazy map.
from math import sqrt, log10, floor
from collections import deque
from argparse import ArgumentParser as argument_parser
from argparse import Action as argument_action
from csv import DictReader as csv_dict_reader
from csv import DictWriter as csv_dict_writer
from re import compile as regex_compile
###############################################################################
def unpack_tuple(f):
"""Return a unary function that calls `f` with its argument unpacked."""
return lambda args: f(*iter(args))
def strip_dict(d):
"""Strip leading and trailing whitespace from all keys and values in `d`.
Returns:
The modified dict `d`.
"""
d.update({key: value.strip() for (key, value) in d.items()})
return d
def merge_dicts(d0, d1):
"""Create a new `dict` that is the union of `dict`s `d0` and `d1`."""
d = d0.copy()
d.update(d1)
return d
def change_key_in_dict(d, old_key, new_key):
"""Change the key of the entry in `d` with key `old_key` to `new_key`. If
there is an existing entry
Returns:
The modified dict `d`.
Raises:
KeyError : If `old_key` is not in `d`.
"""
d[new_key] = d.pop(old_key)
return d
def key_from_dict(d):
"""Create a hashable key from a `dict` by converting the `dict` to a tuple."""
return tuple(sorted(d.items()))
def strip_list(l):
"""Strip leading and trailing whitespace from all values in `l`."""
for i, value in enumerate(l): l[i] = value.strip()
return l
def remove_from_list(l, item):
"""Remove the first occurence of `item` from list `l` and return a tuple of
the index that was removed and the element that was removed.
Raises:
ValueError : If `item` is not in `l`.
"""
idx = l.index(item)
item = l.pop(idx)
return (idx, item)
###############################################################################
def int_or_float(x):
"""Convert `x` to either `int` or `float`, preferring `int`.
Raises:
ValueError : If `x` is not convertible to either `int` or `float`
"""
try:
return int(x)
except ValueError:
return float(x)
def try_int_or_float(x):
"""Try to convert `x` to either `int` or `float`, preferring `int`. `x` is
returned unmodified if conversion fails.
"""
try:
return int_or_float(x)
except ValueError:
return x
###############################################################################
def ranges_overlap(x1, x2, y1, y2):
"""Returns true if the ranges `[x1, x2]` and `[y1, y2]` overlap,
where `x1 <= x2` and `y1 <= y2`.
Raises:
AssertionError : If `x1 > x2` or `y1 > y2`.
"""
assert x1 <= x2
assert y1 <= y2
return x1 <= y2 and y1 <= x2
def ranges_overlap_uncertainty(x, x_unc, y, y_unc):
"""Returns true if the ranges `[x - x_unc, x + x_unc]` and
`[y - y_unc, y + y_unc]` overlap, where `x_unc >= 0` and `y_unc >= 0`.
Raises:
AssertionError : If `x_unc < 0` or `y_unc < 0`.
"""
assert x_unc >= 0
assert y_unc >= 0
return ranges_overlap(x - x_unc, x + x_unc, y - y_unc, y + y_unc)
###############################################################################
# Formulas for propagation of uncertainty from:
#
# https://en.wikipedia.org/wiki/Propagation_of_uncertainty#Example_formulas
#
# Even though it's Wikipedia, I trust it as I helped write that table.
#
# XXX Replace with a proper reference.
def uncertainty_multiplicative(f, A, A_abs_unc, B, B_abs_unc):
"""Compute the propagated uncertainty from the multiplication of two
uncertain values, `A +/- A_abs_unc` and `B +/- B_abs_unc`. Given `f = AB` or
`f = A/B`, where `A != 0` and `B != 0`, the uncertainty in `f` is
approximately:
.. math::
\sigma_f = |f| \sqrt{\frac{\sigma_A}{A} ^ 2 + \frac{\sigma_B}{B} ^ 2}
Raises:
ZeroDivisionError : If `A == 0` or `B == 0`.
"""
return abs(f) * sqrt((A_abs_unc / A) ** 2 + (B_abs_unc / B) ** 2);
def uncertainty_additive(c, A_abs_unc, d, B_abs_unc):
"""Compute the propagated uncertainty from addition of two uncertain values,
`A +/- A_abs_unc` and `B +/- B_abs_unc`. Given `f = cA + dB`, where `c` and
`d` are certain constants, the uncertainty in `f` is approximately:
.. math::
f_{\sigma} = \sqrt{c ^ 2 * A_{\sigma} ^ 2 + d ^ 2 * B_{\sigma} ^ 2}
"""
return sqrt(((c ** 2) * (A_abs_unc ** 2)) + ((d ** 2) * (B_abs_unc ** 2)))
###############################################################################
# XXX Create change class.
def absolute_change(old, new):
"""Computes the absolute change from old to new:
.. math::
absolute_change = new - old
"""
return new - old
def absolute_change_uncertainty(old, old_unc, new, new_unc):
"""Computes the uncertainty in the absolute change from old to new and returns
a tuple of the absolute change and the absolute change uncertainty.
"""
absolute_change = new - old
absolute_change_unc = uncertainty_additive(1.0, new_unc, -1.0, old_unc)
return (absolute_change, absolute_change_unc)
def percent_change(old, new):
"""Computes the percent change from old to new:
.. math::
percent_change = 100 \frac{new - old}{abs(old)}
"""
return float(new - old) / abs(old)
def percent_change_uncertainty(old, old_unc, new, new_unc):
"""Computes the uncertainty in the percent change from old to new and returns
a tuple of the absolute change, the absolute change uncertainty, the percent
change and the percent change uncertainty.
"""
# Let's break this down into a few sub-operations:
#
# absolute_change = new - old <- Additive propagation.
# relative_change = change / abs(old) <- Multiplicative propagation.
# percent_change = 100 * y <- Multiplicative propagation.
if old == 0:
# We can't compute relative change because the old value is 0.
return (float("nan"), float("nan"), float("nan"), float("nan"))
(absolute_change, absolute_change_unc) = absolute_change_uncertainty(
old, old_unc, new, new_unc
)
if absolute_change == 0:
# We can't compute relative change uncertainty because the relative
# uncertainty of a value of 0 is undefined.
return (absolute_change, absolute_change_unc, float("nan"), float("nan"))
relative_change = float(absolute_change) / abs(old)
relative_change_unc = uncertainty_multiplicative(
relative_change, absolute_change, absolute_change_unc, old, old_unc
)
percent_change = 100.0 * relative_change
percent_change_unc = uncertainty_multiplicative(
percent_change, 100.0, 0.0, relative_change, relative_change_unc
)
return (
absolute_change, absolute_change_unc, percent_change, percent_change_unc
)
###############################################################################
def find_significant_digit(x):
"""Return the significant digit of the number x. The result is the number of
digits after the decimal place to round to (negative numbers indicate rounding
before the decimal place)."""
if x == 0: return 0
return -int(floor(log10(abs(x))))
def round_with_int_conversion(x, ndigits = None):
"""Rounds `x` to `ndigits` after the the decimal place. If `ndigits` is less
than 1, convert the result to `int`. If `ndigits` is `None`, the significant
digit of `x` is used."""
if ndigits is None: ndigits = find_significant_digit(x)
x_rounded = round(x, ndigits)
return int(x_rounded) if ndigits < 1 else x_rounded
###############################################################################
class measured_variable(object):
"""A meta-variable representing measured data. It is composed of three raw
variables plus units meta-data.
Attributes:
quantity (`str`) :
Name of the quantity variable of this object.
uncertainty (`str`) :
Name of the uncertainty variable of this object.
sample_size (`str`) :
Name of the sample size variable of this object.
units (units class or `None`) :
The units the value is measured in.
"""
def __init__(self, quantity, uncertainty, sample_size, units = None):
self.quantity = quantity
self.uncertainty = uncertainty
self.sample_size = sample_size
self.units = units
def as_tuple(self):
return (self.quantity, self.uncertainty, self.sample_size, self.units)
def __iter__(self):
return iter(self.as_tuple())
def __str__(self):
return str(self.as_tuple())
def __repr__(self):
return str(self)
class measured_value(object):
"""An object that represents a value determined by multiple measurements.
Attributes:
quantity (scalar) :
The quantity of the value, e.g. the arithmetic mean.
uncertainty (scalar) :
The measurement uncertainty, e.g. the sample standard deviation.
sample_size (`int`) :
The number of observations contributing to the value.
units (units class or `None`) :
The units the value is measured in.
"""
def __init__(self, quantity, uncertainty, sample_size = 1, units = None):
self.quantity = quantity
self.uncertainty = uncertainty
self.sample_size = sample_size
self.units = units
def as_tuple(self):
return (self.quantity, self.uncertainty, self.sample_size, self.units)
def __iter__(self):
return iter(self.as_tuple())
def __str__(self):
return str(self.as_tuple())
def __repr__(self):
return str(self)
###############################################################################
def arithmetic_mean(X):
"""Computes the arithmetic mean of the sequence `X`.
Let:
* `n = len(X)`.
* `u` denote the arithmetic mean of `X`.
.. math::
u = \frac{\sum_{i = 0}^{n - 1} X_i}{n}
"""
return sum(X) / len(X)
def sample_variance(X, u = None):
"""Computes the sample variance of the sequence `X`.
Let:
* `n = len(X)`.
* `u` denote the arithmetic mean of `X`.
* `s` denote the sample standard deviation of `X`.
.. math::
v = \frac{\sum_{i = 0}^{n - 1} (X_i - u)^2}{n - 1}
Args:
X (`Iterable`) : The sequence of values.
u (number) : The arithmetic mean of `X`.
"""
if u is None: u = arithmetic_mean(X)
return sum(imap(lambda X_i: (X_i - u) ** 2, X)) / (len(X) - 1)
def sample_standard_deviation(X, u = None, v = None):
"""Computes the sample standard deviation of the sequence `X`.
Let:
* `n = len(X)`.
* `u` denote the arithmetic mean of `X`.
* `v` denote the sample variance of `X`.
* `s` denote the sample standard deviation of `X`.
.. math::
s &= \sqrt{v}
&= \sqrt{\frac{\sum_{i = 0}^{n - 1} (X_i - u)^2}{n - 1}}
Args:
X (`Iterable`) : The sequence of values.
u (number) : The arithmetic mean of `X`.
v (number) : The sample variance of `X`.
"""
if u is None: u = arithmetic_mean(X)
if v is None: v = sample_variance(X, u)
return sqrt(v)
def combine_sample_size(As):
"""Computes the combined sample variance of a group of `measured_value`s.
Let:
* `g = len(As)`.
* `n_i = As[i].samples`.
* `n` denote the combined sample size of `As`.
.. math::
n = \sum{i = 0}^{g - 1} n_i
"""
return sum(imap(unpack_tuple(lambda u_i, s_i, n_i, t_i: n_i), As))
def combine_arithmetic_mean(As, n = None):
"""Computes the combined arithmetic mean of a group of `measured_value`s.
Let:
* `g = len(As)`.
* `u_i = As[i].quantity`.
* `n_i = As[i].samples`.
* `n` denote the combined sample size of `As`.
* `u` denote the arithmetic mean of the quantities of `As`.
.. math::
u = \frac{\sum{i = 0}^{g - 1} n_i u_i}{n}
"""
if n is None: n = combine_sample_size(As)
return sum(imap(unpack_tuple(lambda u_i, s_i, n_i, t_i: n_i * u_i), As)) / n
def combine_sample_variance(As, n = None, u = None):
"""Computes the combined sample variance of a group of `measured_value`s.
Let:
* `g = len(As)`.
* `u_i = As[i].quantity`.
* `s_i = As[i].uncertainty`.
* `n_i = As[i].samples`.
* `n` denote the combined sample size of `As`.
* `u` denote the arithmetic mean of the quantities of `As`.
* `v` denote the sample variance of `X`.
.. math::
v = \frac{(\sum_{i = 0}^{g - 1} n_i (u_i - u)^2 + s_i^2 (n_i - 1))}{n - 1}
Args:
As (`Iterable` of `measured_value`s) : The sequence of values.
n (number) : The combined sample sizes of `As`.
u (number) : The combined arithmetic mean of `As`.
"""
if n <= 1: return 0
if n is None: n = combine_sample_size(As)
if u is None: u = combine_arithmetic_mean(As, n)
return sum(imap(unpack_tuple(
lambda u_i, s_i, n_i, t_i: n_i * (u_i - u) ** 2 + (s_i ** 2) * (n_i - 1)
), As)) / (n - 1)
def combine_sample_standard_deviation(As, n = None, u = None, v = None):
"""Computes the combined sample standard deviation of a group of
`measured_value`s.
Let:
* `g = len(As)`.
* `u_i = As[i].quantity`.
* `s_i = As[i].uncertainty`.
* `n_i = As[i].samples`.
* `n` denote the combined sample size of `As`.
* `u` denote the arithmetic mean of the quantities of `As`.
* `v` denote the sample variance of `X`.
* `s` denote the sample standard deviation of `X`.
.. math::
v &= \frac{(\sum_{i = 0}^{g - 1} n_i (u_i - u)^2 + s_i^2 (n_i - 1))}{n - 1}
s &= \sqrt{v}
Args:
As (`Iterable` of `measured_value`s) : The sequence of values.
n (number) : The combined sample sizes of `As`.
u (number) : The combined arithmetic mean of `As`.
v (number) : The combined sample variance of `As`.
"""
if n <= 1: return 0
if n is None: n = combine_sample_size(As)
if u is None: u = combine_arithmetic_mean(As, n)
if v is None: v = combine_sample_variance(As, n, u)
return sqrt(v)
###############################################################################
def store_const_multiple(const, *destinations):
"""Returns an `argument_action` class that sets multiple argument
destinations (`destinations`) to `const`."""
class store_const_multiple_action(argument_action):
def __init__(self, *args, **kwargs):
super(store_const_multiple_action, self).__init__(
metavar = None, nargs = 0, const = const, *args, **kwargs
)
def __call__(self, parser, namespace, values, option_string = None):
for destination in destinations:
setattr(namespace, destination, const)
return store_const_multiple_action
def store_true_multiple(*destinations):
"""Returns an `argument_action` class that sets multiple argument
destinations (`destinations`) to `True`."""
return store_const_multiple(True, *destinations)
def store_false_multiple(*destinations):
"""Returns an `argument_action` class that sets multiple argument
destinations (`destinations`) to `False`."""
return store_const_multiple(False, *destinations)
###############################################################################
def process_program_arguments():
ap = argument_parser(
description = (
"Compares two sets of combined performance results and identifies "
"statistically significant changes."
)
)
ap.add_argument(
"baseline_input_file",
help = ("CSV file containing the baseline performance results. The first "
"two rows should be a header. The 1st header row specifies the "
"name of each variable, and the 2nd header row specifies the units "
"for that variable. The baseline results may be a superset of the "
"observed performance results, but the reverse is not true. The "
"baseline results must contain data for every datapoint in the "
"observed performance results."),
type = str
)
ap.add_argument(
"observed_input_file",
help = ("CSV file containing the observed performance results. The first "
"two rows should be a header. The 1st header row specifies the name "
"of header row specifies the units for that variable."),
type = str
)
ap.add_argument(
"-o", "--output-file",
help = ("The file that results are written to. If `-`, results are "
"written to stdout."),
action = "store", type = str, default = "-",
metavar = "OUTPUT"
)
ap.add_argument(
"-c", "--control-variable",
help = ("Treat the specified variable as a control variable. This means "
"it will be filtered out when forming dataset keys. For example, "
"this could be used to ignore a timestamp variable that is "
"different in the baseline and observed results. May be specified "
"multiple times."),
action = "append", type = str, dest = "control_variables", default = [],
metavar = "QUANTITY"
)
ap.add_argument(
"-d", "--dependent-variable",
help = ("Treat the specified three variables as a dependent variable. The "
"1st variable is the measured quantity, the 2nd is the uncertainty "
"of the measurement and the 3rd is the sample size. The defaults "
"are the dependent variables of Thrust's benchmark suite. May be "
"specified multiple times."),
action = "append", type = str, dest = "dependent_variables", default = [],
metavar = "QUANTITY,UNCERTAINTY,SAMPLES"
)
ap.add_argument(
"-t", "--change-threshold",
help = ("Treat relative changes less than this amount (a percentage) as "
"statistically insignificant. The default is 5%%."),
action = "store", type = float, default = 5,
metavar = "PERCENTAGE"
)
ap.add_argument(
"-p", "--preserve-whitespace",
help = ("Don't trim leading and trailing whitespace from each CSV cell."),
action = "store_true", default = False
)
ap.add_argument(
"--output-all-variables",
help = ("Don't omit original absolute values in output."),
action = "store_true", default = False
)
ap.add_argument(
"--output-all-datapoints",
help = ("Don't omit datapoints that are statistically indistinguishable "
"in output."),
action = "store_true", default = False
)
ap.add_argument(
"-a", "--output-all",
help = ("Equivalent to `--output-all-variables --output-all-datapoints`."),
action = store_true_multiple("output_all_variables", "output_all_datapoints")
)
return ap.parse_args()
###############################################################################
def filter_comments(f, s = "#"):
"""Return an iterator to the file `f` which filters out all lines beginning
with `s`."""
return filter(lambda line: not line.startswith(s), f)
###############################################################################
class io_manager(object):
"""Manages I/O operations and represents the input data as an `Iterable`
sequence of `dict`s.
It is `Iterable` and an `Iterator`. It can be used with `with`.
Attributes:
preserve_whitespace (`bool`) :
If `False`, leading and trailing whitespace is stripped from each CSV cell.
writer (`csv_dict_writer`) :
CSV writer object that the output is written to.
output_file (`file` or `stdout`) :
The output `file` object.
baseline_reader (`csv_dict_reader`) :
CSV reader object for the baseline results.
observed_reader (`csv_dict_reader`) :
CSV reader object for the observed results.
baseline_input_file (`file`) :
`file` object for the baseline results.
observed_input_file (`file`) :
`file` object for the observed results..
variable_names (`list` of `str`s) :
Names of the variables, in order.
variable_units (`list` of `str`s) :
Units of the variables, in order.
"""
def __init__(self,
baseline_input_file, observed_input_file,
output_file,
preserve_whitespace = False):
"""Read input files and open the output file and construct a new `io_manager`
object.
If `preserve_whitespace` is `False`, leading and trailing whitespace is
stripped from each CSV cell.
Raises
AssertionError :
If `type(preserve_whitespace) != bool`.
"""
assert type(preserve_whitespace) == bool
self.preserve_whitespace = preserve_whitespace
# Open baseline results.
self.baseline_input_file = open(baseline_input_file)
self.baseline_reader = csv_dict_reader(
filter_comments(self.baseline_input_file)
)
if not self.preserve_whitespace:
strip_list(self.baseline_reader.fieldnames)
self.variable_names = list(self.baseline_reader.fieldnames) # Copy.
self.variable_units = self.baseline_reader.next()
if not self.preserve_whitespace:
strip_dict(self.variable_units)
# Open observed results.
self.observed_input_file = open(observed_input_file)
self.observed_reader = csv_dict_reader(
filter_comments(self.observed_input_file)
)
if not self.preserve_whitespace:
strip_list(self.observed_reader.fieldnames)
# Make sure all inputs have the same variables schema.
assert self.variable_names == self.observed_reader.fieldnames, \
"Observed results input file (`" + observed_input_file + "`) " + \
"variable schema `" + str(self.observed_reader.fieldnames) + "` does " + \
"not match the baseline results input file (`" + baseline_input_file + \
"`) variable schema `" + str(self.variable_names) + "`."
# Consume the next row, which should be the second line of the header.
observed_variable_units = self.observed_reader.next()
if not self.preserve_whitespace:
strip_dict(observed_variable_units)
# Make sure all inputs have the same units schema.
assert self.variable_units == observed_variable_units, \
"Observed results input file (`" + observed_input_file + "`) " + \
"units schema `" + str(observed_variable_units) + "` does not " + \
"match the baseline results input file (`" + baseline_input_file + \
"`) units schema `" + str(self.variable_units) + "`."
if output_file == "-": # Output to stdout.
self.output_file = stdout
else: # Output to user-specified file.
self.output_file = open(output_file, "w")
self.writer = csv_dict_writer(
self.output_file, fieldnames = self.variable_names
)
def __enter__(self):
"""Called upon entering a `with` statement."""
return self
def __exit__(self, *args):
"""Called upon exiting a `with` statement."""
if self.output_file is stdout:
self.output_file = None
elif self.output_file is not None:
self.output_file.__exit__(*args)
self.baseline_input_file.__exit__(*args)
self.observed_input_file.__exit__(*args)
def append_variable(self, name, units):
"""Add a new variable to the output schema."""
self.variable_names.append(name)
self.variable_units.update({name : units})
# Update CSV writer field names.
self.writer.fieldnames = self.variable_names
def insert_variable(self, idx, name, units):
"""Insert a new variable into the output schema at index `idx`."""
self.variable_names.insert(idx, name)
self.variable_units.update({name : units})
# Update CSV writer field names.
self.writer.fieldnames = self.variable_names
def remove_variable(self, name):
"""Remove variable from the output schema and return a tuple of the variable
index and the variable units.
Raises:
ValueError : If `name` is not in the output schema.
"""
# Remove the variable and get its index, which we'll need to remove the
# corresponding units entry.
(idx, item) = remove_from_list(self.variable_names, name)
# Remove the units entry.
units = self.variable_units.pop(item)
# Update CSV writer field names.
self.writer.fieldnames = self.variable_names
return (idx, units)
#############################################################################
# Input Stream.
def baseline(self):
"""Return an iterator to the baseline results input sequence."""
return imap(lambda row: strip_dict(row), self.baseline_reader)
def observed(self):
"""Return an iterator to the observed results input sequence."""
return imap(lambda row: strip_dict(row), self.observed_reader)
#############################################################################
# Output.
def write_header(self):
"""Write the header for the output CSV file."""
# Write the first line of the header.
self.writer.writeheader()
# Write the second line of the header.
self.writer.writerow(self.variable_units)
def write(self, d):
"""Write a record (a `dict`) to the output CSV file."""
self.writer.writerow(d)
###############################################################################
class dependent_variable_parser(object):
"""Parses a `--dependent-variable=AVG,STDEV,TRIALS` command line argument."""
#############################################################################
# Grammar
# Parse a variable_name.
variable_name_rule = r'[^,]+'
# Parse a variable classification.
dependent_variable_rule = r'(' + variable_name_rule + r')' \
+ r',' \
+ r'(' + variable_name_rule + r')' \
+ r',' \
+ r'(' + variable_name_rule + r')'
engine = regex_compile(dependent_variable_rule)
#############################################################################
def __call__(self, s):
"""Parses the string `s` with the form "AVG,STDEV,TRIALS".
Returns:
A `measured_variable`.
Raises:
AssertionError : If parsing fails.
"""
match = self.engine.match(s)
assert match is not None, \
"Dependent variable (-d) `" +s+ "` is invalid, the format is " + \
"`AVG,STDEV,TRIALS`."
return measured_variable(match.group(1), match.group(2), match.group(3))
###############################################################################
class record_aggregator(object):
"""Consumes and combines records and represents the result as an `Iterable`
sequence of `dict`s.
It is `Iterable` and an `Iterator`.
Attributes:
dependent_variables (`list` of `measured_variable`s) :
A list of dependent variables provided on the command line.
control_variables (`list` of `str`s) :
A list of control variables provided on the command line.
dataset (`dict`) :
A mapping of distinguishing (e.g. control + independent) values (`tuple`s
of variable-quantity pairs) to `list`s of dependent values (`dict`s from
variables to lists of cells).
in_order_dataset_keys :
A list of unique dataset keys (e.g. distinguishing variables) in order of
appearance.
"""
def __init__(self, dependent_variables, control_variables):
"""Construct a new `record_aggregator` object.
Raises:
AssertionError : If parsing of dependent variables fails.
"""
self.dependent_variables = dependent_variables
self.control_variables = control_variables
self.dataset = {}
self.in_order_dataset_keys = deque()
#############################################################################
# Insertion.
def key_from_dict(self, d):
"""Create a hashable key from a `dict` by filtering out control variables
and then converting the `dict` to a tuple.
Raises:
AssertionError : If any control variable was not found in `d`.
"""
distinguishing_values = d.copy()
# Filter out control variables.
for var in self.control_variables:
distinguishing_values.pop(var, None)
return key_from_dict(distinguishing_values)
def append(self, record):
"""Add `record` to the dataset.
Raises:
ValueError : If any `str`-to-numeric conversions fail.
"""
# The distinguishing variables are the control and independent variables.
# They form the key for each record in the dataset. Records with the same
# distinguishing variables are treated as observations of the same
# datapoint.
dependent_values = {}
# To allow the same sample size variable to be used for multiple dependent
# variables, we don't pop sample size variables until we're done processing
# all variables.
sample_size_variables = []
# Separate the dependent values from the distinguishing variables and
# perform `str`-to-numeric conversions.
for var in self.dependent_variables:
quantity, uncertainty, sample_size, units = var.as_tuple()
dependent_values[quantity] = [int_or_float(record.pop(quantity))]
dependent_values[uncertainty] = [int_or_float(record.pop(uncertainty))]
dependent_values[sample_size] = [int(record[sample_size])]
sample_size_variables.append(sample_size)
# Pop sample size variables.
for var in sample_size_variables:
# Allowed to fail, as we may have duplicates.
record.pop(var, None)
distinguishing_values = self.key_from_dict(record)
if distinguishing_values in self.dataset:
# These distinguishing values already exist, so get the `dict` they're
# mapped to, look up each key in `dependent_values` in the `dict`, and
# add the corresponding quantity in `dependent_values` to the list in the
# the `dict`.
for var, columns in dependent_values.iteritems():
self.dataset[distinguishing_values][var] += columns
else:
# These distinguishing values aren't in the dataset, so add them and
# record them in `in_order_dataset_keys`.
self.dataset[distinguishing_values] = dependent_values
self.in_order_dataset_keys.append(distinguishing_values)
#############################################################################
# Postprocessing.
def combine_dependent_values(self, dependent_values):
"""Takes a mapping of dependent variables to lists of cells and returns
a new mapping with the cells combined.
Raises:
AssertionError : If class invariants were violated.
"""
combined_dependent_values = dependent_values.copy()
for var in self.dependent_variables:
quantity, uncertainty, sample_size, units = var.as_tuple()
quantities = dependent_values[quantity]
uncertainties = dependent_values[uncertainty]
sample_sizes = dependent_values[sample_size]
if type(sample_size) is list:
# Sample size hasn't been combined yet.
assert len(quantities) == len(uncertainties) \
and len(uncertainties) == len(sample_sizes), \
"Length of quantities list `(" + str(len(quantities)) + ")`, " + \
"length of uncertainties list `(" + str(len(uncertainties)) + \
"),` and length of sample sizes list `(" + str(len(sample_sizes)) + \
")` are not the same."
else:
# Another dependent variable that uses our sample size has combined it
# already.
assert len(quantities) == len(uncertainties), \
"Length of quantities list `(" + str(len(quantities)) + ")` and " + \
"length of uncertainties list `(" + str(len(uncertainties)) + \
")` are not the same."
# Convert the three separate `list`s into one list of `measured_value`s.
measured_values = []
for i in range(len(quantities)):
mv = measured_value(
quantities[i], uncertainties[i], sample_sizes[i], units
)
measured_values.append(mv)
# Combine the `measured_value`s.
combined_sample_size = combine_sample_size(
measured_values
)
combined_arithmetic_mean = combine_arithmetic_mean(
measured_values, combined_sample_size
)
combined_sample_standard_deviation = combine_sample_standard_deviation(
measured_values, combined_sample_size, combined_arithmetic_mean
)
# Round the quantity and uncertainty to the significant digit of
# uncertainty and insert the combined values into the results.
sigdig = find_significant_digit(combined_sample_standard_deviation)
# combined_arithmetic_mean = round_with_int_conversion(
# combined_arithmetic_mean, sigdig
# )
# combined_sample_standard_deviation = round_with_int_conversion(
# combined_sample_standard_deviation, sigdig
# )
combined_dependent_values[quantity] = combined_arithmetic_mean
combined_dependent_values[uncertainty] = combined_sample_standard_deviation
combined_dependent_values[sample_size] = combined_sample_size
return combined_dependent_values
#############################################################################
# Output Stream.
def __iter__(self):
"""Return an iterator to the output sequence of separated distinguishing
variables and dependent variables (a tuple of two `dict`s).
This is a requirement for the `Iterable` protocol.
"""
return self
def records(self):
"""Return an iterator to the output sequence of CSV rows (`dict`s of
variables to values).
"""
return imap(unpack_tuple(lambda dist, dep: merge_dicts(dist, dep)), self)
def next(self):
"""Produce the components of the next output record - a tuple of two
`dict`s. The first `dict` is a mapping of distinguishing variables to
distinguishing values, the second `dict` is a mapping of dependent
variables to combined dependent values. Combining the two dicts forms a
CSV row suitable for output.
This is a requirement for the `Iterator` protocol.
Raises:
StopIteration : If there is no more output.
AssertionError : If class invariants were violated.
"""
assert len(self.dataset.keys()) == len(self.in_order_dataset_keys), \
"Number of dataset keys (`" + str(len(self.dataset.keys())) + \
"`) is not equal to the number of keys in the ordering list (`" + \
str(len(self.in_order_dataset_keys)) + "`)."
if len(self.in_order_dataset_keys) == 0:
raise StopIteration()
# Get the next set of distinguishing values and convert them to a `dict`.
raw_distinguishing_values = self.in_order_dataset_keys.popleft()
distinguishing_values = dict(raw_distinguishing_values)
dependent_values = self.dataset.pop(raw_distinguishing_values)
combined_dependent_values = self.combine_dependent_values(dependent_values)
return (distinguishing_values, combined_dependent_values)
def __getitem__(self, distinguishing_values):
"""Produce the dependent component, a `dict` mapping dependent variables to
combined dependent values, associated with `distinguishing_values`.
Args:
distinguishing_values (`dict`) :
A `dict` mapping distinguishing variables to distinguishing values.
Raises:
KeyError : If `distinguishing_values` is not in the dataset.
"""
raw_distinguishing_values = self.key_from_dict(distinguishing_values)
dependent_values = self.dataset[raw_distinguishing_values]
combined_dependent_values = self.combine_dependent_values(dependent_values)
return combined_dependent_values
###############################################################################
args = process_program_arguments()
if len(args.dependent_variables) == 0:
args.dependent_variables = [
"STL Average Walltime,STL Walltime Uncertainty,STL Trials",
"STL Average Throughput,STL Throughput Uncertainty,STL Trials",
"Thrust Average Walltime,Thrust Walltime Uncertainty,Thrust Trials",
"Thrust Average Throughput,Thrust Throughput Uncertainty,Thrust Trials"
]
# Parse dependent variable options.
dependent_variables = []
parse_dependent_variable = dependent_variable_parser()
#if args.dependent_variables is not None:
for var in args.dependent_variables:
dependent_variables.append(parse_dependent_variable(var))
# Read input files and open the output file.
with io_manager(args.baseline_input_file,
args.observed_input_file,
args.output_file,
args.preserve_whitespace) as iom:
# Create record aggregators.
baseline_ra = record_aggregator(dependent_variables, args.control_variables)
observed_ra = record_aggregator(dependent_variables, args.control_variables)
# Duplicate dependent variables: one for baseline results, one for observed
# results.
baseline_suffix = " - `{0}`".format(
args.baseline_input_file
)
observed_suffix = " - `{0}`".format(
args.observed_input_file
)
for var in dependent_variables:
# Remove the existing quantity variable:
#
# [ ..., a, b, c, ... ]
# ^- remove b at index i
#
(quantity_idx, quantity_units) = iom.remove_variable(var.quantity)
# If the `--output-all-variables` option was specified, add the new baseline
# and observed quantity variables. Note that we insert in the reverse of
# the order we desire (which is baseline then observed):
#
# [ ..., a, b_1, c, ... ]
# ^- insert b_1 at index i
#
# [ ..., a, b_0, b_1, c, ... ]
# ^- insert b_0 at index i
#
if args.output_all_variables:
iom.insert_variable(
quantity_idx, var.quantity + observed_suffix, quantity_units
)
iom.insert_variable(
quantity_idx, var.quantity + baseline_suffix, quantity_units
)
# Remove the existing uncertainty variable.
(uncertainty_idx, uncertainty_units) = iom.remove_variable(var.uncertainty)
# If the `--output-all-variables` option was specified, add the new baseline
# and observed uncertainty variables.
if args.output_all_variables:
iom.insert_variable(
uncertainty_idx, var.uncertainty + observed_suffix, uncertainty_units
)
iom.insert_variable(
uncertainty_idx, var.uncertainty + baseline_suffix, uncertainty_units
)
try:
# Remove the existing sample size variable.
(sample_size_idx, sample_size_units) = iom.remove_variable(var.sample_size)
# If the `--output-all-variables` option was specified, add the new
# baseline and observed sample size variables.
if args.output_all_variables:
iom.insert_variable(
sample_size_idx, var.sample_size + observed_suffix, sample_size_units
)
iom.insert_variable(
sample_size_idx, var.sample_size + baseline_suffix, sample_size_units
)
except ValueError:
# This is alright, because dependent variables may share the same sample
# size variable.
pass
for var in args.control_variables:
iom.remove_variable(var)
# Add change variables.
absolute_change_suffix = " - Change (`{0}` - `{1}`)".format(
args.observed_input_file, args.baseline_input_file
)
percent_change_suffix = " - % Change (`{0}` to `{1}`)".format(
args.observed_input_file, args.baseline_input_file
)
for var in dependent_variables:
iom.append_variable(var.quantity + absolute_change_suffix, var.units)
iom.append_variable(var.uncertainty + absolute_change_suffix, var.units)
iom.append_variable(var.quantity + percent_change_suffix, "")
iom.append_variable(var.uncertainty + percent_change_suffix, "")
# Add all baseline input data to the `record_aggregator`.
for record in iom.baseline():
baseline_ra.append(record)
for record in iom.observed():
observed_ra.append(record)
iom.write_header()
# Compare and output results.
for distinguishing_values, observed_dependent_values in observed_ra:
try:
baseline_dependent_values = baseline_ra[distinguishing_values]
except KeyError:
assert False, \
"Distinguishing value `" + \
str(baseline_ra.key_from_dict(distinguishing_values)) + \
"` was not found in the baseline results."
statistically_significant_change = False
record = distinguishing_values.copy()
# Compute changes, add the values and changes to the record, and identify
# changes that are statistically significant.
for var in dependent_variables:
# Compute changes.
baseline_quantity = baseline_dependent_values[var.quantity]
baseline_uncertainty = baseline_dependent_values[var.uncertainty]
baseline_sample_size = baseline_dependent_values[var.sample_size]
observed_quantity = observed_dependent_values[var.quantity]
observed_uncertainty = observed_dependent_values[var.uncertainty]
observed_sample_size = observed_dependent_values[var.sample_size]
(abs_change, abs_change_unc, per_change, per_change_unc) = \
percent_change_uncertainty(
baseline_quantity, baseline_uncertainty,
observed_quantity, observed_uncertainty
)
# Round the change quantities and uncertainties to the significant digit
# of uncertainty.
try:
abs_change_sigdig = max(
find_significant_digit(abs_change),
find_significant_digit(abs_change_unc),
)
# abs_change = round_with_int_conversion(
# abs_change, abs_change_sigdig
# )
# abs_change_unc = round_with_int_conversion(
# abs_change_unc, abs_change_sigdig
# )
except:
# Any value errors should be due to NaNs returned by
# `percent_change_uncertainty` because quantities or change in
# quantities was 0. We can ignore these.
pass
try:
per_change_sigdig = max(
find_significant_digit(per_change),
find_significant_digit(per_change_unc)
)
# per_change = round_with_int_conversion(
# per_change, per_change_sigdig
# )
# per_change_unc = round_with_int_conversion(
# per_change_unc, per_change_sigdig
# )
except:
# Any value errors should be due to NaNs returned by
# `percent_change_uncertainty` because quantities or change in
# quantities was 0. We can ignore these.
pass
# Add the values (if the `--output-all-variables` option was specified)
# and the changes to the record. Note that the record's schema is
# different from the original schema. If multiple dependent variables
# share the same sample size variable, it's fine - they will overwrite
# each other, but with the same value.
if args.output_all_variables:
record[var.quantity + baseline_suffix] = baseline_quantity
record[var.uncertainty + baseline_suffix] = baseline_uncertainty
record[var.sample_size + baseline_suffix] = baseline_sample_size
record[var.quantity + observed_suffix] = observed_quantity
record[var.uncertainty + observed_suffix] = observed_uncertainty
record[var.sample_size + observed_suffix] = observed_sample_size
record[var.quantity + absolute_change_suffix] = abs_change
record[var.uncertainty + absolute_change_suffix] = abs_change_unc
record[var.quantity + percent_change_suffix] = per_change
record[var.uncertainty + percent_change_suffix] = per_change_unc
# If the range of uncertainties overlap don't overlap and the percentage
# change is greater than the change threshold, then change is
# statistically significant.
overlap = ranges_overlap_uncertainty(
baseline_quantity, baseline_uncertainty,
observed_quantity, observed_uncertainty
)
if not overlap and per_change >= args.change_threshold:
statistically_significant_change = True
# Print the record if a statistically significant change was found or if the
# `--output-all-datapoints` option was specified.
if args.output_all_datapoints or statistically_significant_change:
iom.write(record)
|