Spaces:
Sleeping
Sleeping
macrdel
commited on
Commit
·
a2c9c1b
1
Parent(s):
4ebd26e
update app.py
Browse files- .gitignore +2 -1
- app.py +109 -66
.gitignore
CHANGED
@@ -2,4 +2,5 @@ Include
|
|
2 |
Lib
|
3 |
Scripts
|
4 |
share
|
5 |
-
*env*
|
|
|
|
2 |
Lib
|
3 |
Scripts
|
4 |
share
|
5 |
+
*env*
|
6 |
+
unico_*
|
app.py
CHANGED
@@ -2,32 +2,68 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
|
5 |
-
|
6 |
-
from
|
7 |
import torch
|
8 |
-
# import os
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# ).to(device)
|
19 |
-
#pipe.enable_model_cpu_offload()
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|
26 |
MAX_IMAGE_SIZE = 1024
|
27 |
|
28 |
-
|
29 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
30 |
def infer(
|
|
|
31 |
prompt,
|
32 |
negative_prompt,
|
33 |
seed,
|
@@ -36,18 +72,24 @@ def infer(
|
|
36 |
height,
|
37 |
guidance_scale,
|
38 |
num_inference_steps,
|
39 |
-
|
40 |
progress=gr.Progress(track_tqdm=True),
|
41 |
):
|
|
|
|
|
|
|
42 |
if randomize_seed:
|
43 |
seed = random.randint(0, MAX_SEED)
|
44 |
|
45 |
-
generator = torch.Generator().manual_seed(seed)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
image = pipe(
|
53 |
prompt=prompt,
|
@@ -61,7 +103,6 @@ def infer(
|
|
61 |
|
62 |
return image, seed
|
63 |
|
64 |
-
|
65 |
examples = [
|
66 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
67 |
"An astronaut riding a green horse",
|
@@ -77,20 +118,15 @@ css = """
|
|
77 |
|
78 |
with gr.Blocks(css=css) as demo:
|
79 |
with gr.Column(elem_id="col-container"):
|
80 |
-
gr.Markdown(" #
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
#"SG161222/Realistic_Vision_V5.1_noVAE",
|
90 |
-
"stabilityai/stable-diffusion-2-1",
|
91 |
-
],
|
92 |
-
value="stabilityai/sdxl-turbo",
|
93 |
-
)
|
94 |
|
95 |
with gr.Row():
|
96 |
prompt = gr.Text(
|
@@ -105,25 +141,22 @@ with gr.Blocks(css=css) as demo:
|
|
105 |
|
106 |
result = gr.Image(label="Result", show_label=False)
|
107 |
|
108 |
-
with gr.Accordion("Advanced Settings", open=
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
step=1,
|
123 |
-
value=777,
|
124 |
-
)
|
125 |
|
126 |
-
|
127 |
|
128 |
with gr.Row():
|
129 |
width = gr.Slider(
|
@@ -131,7 +164,7 @@ with gr.Blocks(css=css) as demo:
|
|
131 |
minimum=256,
|
132 |
maximum=MAX_IMAGE_SIZE,
|
133 |
step=32,
|
134 |
-
value=1024,
|
135 |
)
|
136 |
|
137 |
height = gr.Slider(
|
@@ -139,32 +172,42 @@ with gr.Blocks(css=css) as demo:
|
|
139 |
minimum=256,
|
140 |
maximum=MAX_IMAGE_SIZE,
|
141 |
step=32,
|
142 |
-
value=1024,
|
143 |
)
|
144 |
|
145 |
with gr.Row():
|
146 |
guidance_scale = gr.Slider(
|
147 |
-
label="Guidance scale
|
148 |
-
minimum=
|
149 |
-
maximum=
|
150 |
step=0.5,
|
151 |
-
value=
|
152 |
)
|
153 |
|
154 |
num_inference_steps = gr.Slider(
|
155 |
label="Number of inference steps",
|
156 |
minimum=1,
|
157 |
-
maximum=
|
158 |
step=1,
|
159 |
-
value=
|
160 |
)
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
gr.Examples(examples=examples, inputs=[prompt])
|
163 |
-
|
164 |
gr.on(
|
165 |
triggers=[run_button.click, prompt.submit],
|
166 |
fn=infer,
|
167 |
inputs=[
|
|
|
168 |
prompt,
|
169 |
negative_prompt,
|
170 |
seed,
|
@@ -173,7 +216,7 @@ with gr.Blocks(css=css) as demo:
|
|
173 |
height,
|
174 |
guidance_scale,
|
175 |
num_inference_steps,
|
176 |
-
|
177 |
],
|
178 |
outputs=[result, seed],
|
179 |
)
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
+
from peft import PeftModel, PeftConfig
|
7 |
import torch
|
|
|
8 |
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
# Model list including your LoRA model
|
12 |
+
MODEL_LIST = [
|
13 |
+
"CompVis/stable-diffusion-v1-4",
|
14 |
+
"stabilityai/sdxl-turbo",
|
15 |
+
"runwayml/stable-diffusion-v1-5",
|
16 |
+
"stabilityai/stable-diffusion-2-1",
|
17 |
+
"macrdel/unico_proj",
|
18 |
+
]
|
19 |
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
torch_dtype = torch.float16
|
22 |
+
else:
|
23 |
+
torch_dtype = torch.float32
|
|
|
|
|
24 |
|
25 |
+
# Cache to avoid re-initializing pipelines repeatedly
|
26 |
+
model_cache = {}
|
27 |
+
|
28 |
+
def load_pipeline(model_id: str):
|
29 |
+
"""
|
30 |
+
Loads or retrieves a cached DiffusionPipeline.
|
31 |
+
|
32 |
+
If the chosen model is your LoRA adapter, then load the base model
|
33 |
+
(CompVis/stable-diffusion-v1-4) and apply the LoRA weights.
|
34 |
+
"""
|
35 |
+
if model_id in model_cache:
|
36 |
+
return model_cache[model_id]
|
37 |
+
|
38 |
+
if model_id == "macrdel/unico_proj":
|
39 |
+
# Use the specified base model for your LoRA adapter.
|
40 |
+
base_model = "CompVis/stable-diffusion-v1-4"
|
41 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch_dtype)
|
42 |
+
# Load the LoRA weights
|
43 |
+
pipe.unet = PeftModel.from_pretrained(
|
44 |
+
pipe.unet,
|
45 |
+
model_id,
|
46 |
+
subfolder="unet",
|
47 |
+
torch_dtype=torch_dtype
|
48 |
+
)
|
49 |
+
pipe.text_encoder = PeftModel.from_pretrained(
|
50 |
+
pipe.text_encoder,
|
51 |
+
model_id,
|
52 |
+
subfolder="text_encoder",
|
53 |
+
torch_dtype=torch_dtype
|
54 |
+
)
|
55 |
+
else:
|
56 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
57 |
+
|
58 |
+
pipe.to(device)
|
59 |
+
model_cache[model_id] = pipe
|
60 |
+
return pipe
|
61 |
|
62 |
MAX_SEED = np.iinfo(np.int32).max
|
63 |
MAX_IMAGE_SIZE = 1024
|
64 |
|
|
|
|
|
65 |
def infer(
|
66 |
+
model_id,
|
67 |
prompt,
|
68 |
negative_prompt,
|
69 |
seed,
|
|
|
72 |
height,
|
73 |
guidance_scale,
|
74 |
num_inference_steps,
|
75 |
+
lora_scale, # New parameter for adjusting LoRA scale
|
76 |
progress=gr.Progress(track_tqdm=True),
|
77 |
):
|
78 |
+
# Load the pipeline for the chosen model
|
79 |
+
pipe = load_pipeline(model_id)
|
80 |
+
|
81 |
if randomize_seed:
|
82 |
seed = random.randint(0, MAX_SEED)
|
83 |
|
84 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
85 |
|
86 |
+
# If using the LoRA model, update the LoRA scale if supported.
|
87 |
+
if model_id == "macrdel/unico_proj":
|
88 |
+
# This assumes your pipeline's unet has a method to update the LoRA scale.
|
89 |
+
if hasattr(pipe.unet, "set_lora_scale"):
|
90 |
+
pipe.unet.set_lora_scale(lora_scale)
|
91 |
+
else:
|
92 |
+
print("Warning: LoRA scale adjustment method not found on UNet.")
|
93 |
|
94 |
image = pipe(
|
95 |
prompt=prompt,
|
|
|
103 |
|
104 |
return image, seed
|
105 |
|
|
|
106 |
examples = [
|
107 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
108 |
"An astronaut riding a green horse",
|
|
|
118 |
|
119 |
with gr.Blocks(css=css) as demo:
|
120 |
with gr.Column(elem_id="col-container"):
|
121 |
+
gr.Markdown(" # Text-to-Image Gradio Template")
|
122 |
+
|
123 |
+
with gr.Row():
|
124 |
+
# Dropdown to select the model from Hugging Face
|
125 |
+
model_id = gr.Dropdown(
|
126 |
+
label="Model",
|
127 |
+
choices=MODEL_LIST,
|
128 |
+
value=MODEL_LIST[0], # Default model
|
129 |
+
)
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
with gr.Row():
|
132 |
prompt = gr.Text(
|
|
|
141 |
|
142 |
result = gr.Image(label="Result", show_label=False)
|
143 |
|
144 |
+
with gr.Accordion("Advanced Settings", open=False):
|
145 |
+
negative_prompt = gr.Text(
|
146 |
+
label="Negative prompt",
|
147 |
+
max_lines=1,
|
148 |
+
placeholder="Enter a negative prompt",
|
149 |
+
)
|
150 |
+
|
151 |
+
seed = gr.Slider(
|
152 |
+
label="Seed",
|
153 |
+
minimum=0,
|
154 |
+
maximum=MAX_SEED,
|
155 |
+
step=1,
|
156 |
+
value=42, # Default seed
|
157 |
+
)
|
|
|
|
|
|
|
158 |
|
159 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
160 |
|
161 |
with gr.Row():
|
162 |
width = gr.Slider(
|
|
|
164 |
minimum=256,
|
165 |
maximum=MAX_IMAGE_SIZE,
|
166 |
step=32,
|
167 |
+
value=1024,
|
168 |
)
|
169 |
|
170 |
height = gr.Slider(
|
|
|
172 |
minimum=256,
|
173 |
maximum=MAX_IMAGE_SIZE,
|
174 |
step=32,
|
175 |
+
value=1024,
|
176 |
)
|
177 |
|
178 |
with gr.Row():
|
179 |
guidance_scale = gr.Slider(
|
180 |
+
label="Guidance scale",
|
181 |
+
minimum=0.0,
|
182 |
+
maximum=20.0,
|
183 |
step=0.5,
|
184 |
+
value=7.0,
|
185 |
)
|
186 |
|
187 |
num_inference_steps = gr.Slider(
|
188 |
label="Number of inference steps",
|
189 |
minimum=1,
|
190 |
+
maximum=100,
|
191 |
step=1,
|
192 |
+
value=20,
|
193 |
)
|
194 |
|
195 |
+
# New slider for LoRA scale.
|
196 |
+
lora_scale = gr.Slider(
|
197 |
+
label="LoRA Scale",
|
198 |
+
minimum=0.0,
|
199 |
+
maximum=2.0,
|
200 |
+
step=0.1,
|
201 |
+
value=1.0,
|
202 |
+
info="Adjust the influence of the LoRA weights",
|
203 |
+
)
|
204 |
+
|
205 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
206 |
gr.on(
|
207 |
triggers=[run_button.click, prompt.submit],
|
208 |
fn=infer,
|
209 |
inputs=[
|
210 |
+
model_id,
|
211 |
prompt,
|
212 |
negative_prompt,
|
213 |
seed,
|
|
|
216 |
height,
|
217 |
guidance_scale,
|
218 |
num_inference_steps,
|
219 |
+
lora_scale, # Pass the new slider value
|
220 |
],
|
221 |
outputs=[result, seed],
|
222 |
)
|