import gradio as gr import numpy as np import random from diffusers import StableDiffusionPipeline # DiffusionPipeline from peft import PeftModel, PeftConfig import torch device = "cuda" if torch.cuda.is_available() else "cpu" # Model list including your LoRA model MODEL_LIST = [ "CompVis/stable-diffusion-v1-4", "stabilityai/sdxl-turbo", "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", "macrdel/unico_proj", ] if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 # Cache to avoid re-initializing pipelines repeatedly model_cache = {} def load_pipeline(model_id: str, lora_scale): """ Loads or retrieves a cached DiffusionPipeline. If the chosen model is your LoRA adapter, then load the base model (CompVis/stable-diffusion-v1-4) and apply the LoRA weights. """ if model_id in model_cache: return model_cache[model_id] if model_id == "macrdel/unico_proj": # Use the specified base model for your LoRA adapter. base_model = "CompVis/stable-diffusion-v1-4" pipe = StableDiffusionPipeline.from_pretrained(base_model, torch_dtype=torch_dtype) # Load the LoRA weights pipe.unet = PeftModel.from_pretrained( pipe.unet, model_id, subfolder="unet", torch_dtype=torch_dtype ) pipe.text_encoder = PeftModel.from_pretrained( pipe.text_encoder, model_id, subfolder="text_encoder", torch_dtype=torch_dtype ) else: pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype, safety_checker=None).to(device) pipe.unet.load_state_dict({k: lora_scale * v for k, v in pipe.unet.state_dict().items()}) pipe.text_encoder.load_state_dict({k: lora_scale * v for k, v in pipe.text_encoder.state_dict().items()}) pipe.to(device) model_cache[model_id] = pipe return pipe MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer( model_id, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale, # New parameter for adjusting LoRA scale progress=gr.Progress(track_tqdm=True), ): # Load the pipeline for the chosen model pipe = load_pipeline(model_id, lora_scale) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) # If using the LoRA model, update the LoRA scale if supported. # if model_id == "macrdel/unico_proj": # This assumes your pipeline's unet has a method to update the LoRA scale. # if hasattr(pipe.unet, "set_lora_scale"): # pipe.unet.set_lora_scale(lora_scale) # else: # print("Warning: LoRA scale adjustment method not found on UNet.") image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") with gr.Row(): # Dropdown to select the model from Hugging Face model_id = gr.Dropdown( label="Model", choices=MODEL_LIST, value=MODEL_LIST[0], # Default model ) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, # Default seed ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=20.0, step=0.5, value=7.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=20, ) # New slider for LoRA scale. lora_scale = gr.Slider( label="LoRA Scale", minimum=0.0, maximum=2.0, step=0.1, value=1.0, info="Adjust the influence of the LoRA weights", ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ model_id, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale, # Pass the new slider value ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()