Spaces:
Running
Running
import logging | |
import gradio as gr | |
import datasets | |
import sentence_transformers | |
logging.disable(logging.CRITICAL) | |
model = sentence_transformers.SentenceTransformer( | |
"dangvantuan/sentence-camembert-large", device="cuda" | |
) | |
dataset = datasets.load_dataset("json", data_files=["./data/dataset.json"], split="train") | |
dataset.load_faiss_index("embeddings", "index.faiss") | |
def search(query: str, k: int): | |
query_embedding = model.encode(query) | |
_, retrieved_examples = dataset.get_nearest_examples( | |
"embeddings", | |
query_embedding, | |
k=k, | |
) | |
results = [] | |
for text, start, end, title, url in zip( | |
retrieved_examples["text"], | |
retrieved_examples["start"], | |
retrieved_examples["end"], | |
retrieved_examples["title"], | |
retrieved_examples["url"], | |
): | |
start = start | |
end = end | |
result = { | |
"title": title, | |
"transcript": f"[{str(start)+' ====> '+str(end)}] {text}", | |
"link": url | |
} | |
results.append(result) | |
return results | |
iface = gr.Interface( | |
fn=search, | |
inputs=["text", "number"], | |
outputs=gr.outputs.JSON(), | |
title="Search Dataset", | |
description="Search a dataset using Camembert and Faiss.", | |
example=[ | |
"Enter a query to search for.", | |
5 | |
] | |
) | |
if __name__ == "__main__": | |
iface.launch() | |