|
import torch |
|
import torch.nn.functional as F |
|
import transformers |
|
import gradio as gr |
|
|
|
from src.client import DistributedBloomForCausalLM |
|
|
|
INITIAL_PEERS = ['/ip4/193.106.95.184/tcp/443/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs'] |
|
|
|
import hivemind |
|
dht1 = hivemind.DHT(start=True) |
|
dht2 = hivemind.DHT(start=True, initial_peers=dht1.get_visible_maddrs()) |
|
|
|
|
|
tokenizer = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3") |
|
model = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3", initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32) |
|
|
|
def inference(text, seq_length=1): |
|
input_ids = tokenizer(text, return_tensors='pt')['input_ids'] |
|
final_tokens = input_ids |
|
with torch.inference_mode(), model.transformer.h.inference_session() as remote_transformer: |
|
for i in range(seq_length): |
|
h = model.transformer.word_embeddings(input_ids) |
|
h = model.transformer.word_embeddings_layernorm(h) |
|
h = remote_transformer.step(h) |
|
h = model.transformer.ln_f(h) |
|
h = F.linear(h, weight=model.transformer.word_embeddings.weight) |
|
next_token_ix = torch.multinomial((h[0, -1] / 0.8).softmax(-1), 1) |
|
|
|
final_tokens = torch.cat([final_tokens, next_token_ix.view(1, 1)], dim=-1) |
|
input_ids = next_token_ix.view(1, 1) |
|
return tokenizer.decode(final_tokens[0], skip_special_tokens=False) |
|
|
|
iface = gr.Interface( |
|
fn=inference, |
|
inputs=[ |
|
gr.Textbox(lines=10, label="Input text"), |
|
gr.inputs.Slider( |
|
minimum=0, |
|
maximum=1000, |
|
step=1, |
|
default=42, |
|
label="Sequence length for generation" |
|
) |
|
], |
|
outputs="text" |
|
) |
|
iface.launch() |