Spaces:
Runtime error
Runtime error
File size: 11,246 Bytes
e4bd7f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import json
import torch
import math
from torch import nn
from typing import List
from transformers import BertTokenizer
from urllib.parse import urlparse
from timm.models.hub import download_cached_file
from .vit import interpolate_pos_embed
from .swin_transformer import interpolate_relative_pos_embed
from pathlib import Path
CONFIG_PATH=(Path(__file__).resolve().parents[1])
def read_json(rpath):
with open(rpath, 'r') as f:
return json.load(f)
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module,
base_model_prefix: str, skip_key: str):
uninitialized_encoder_weights: List[str] = []
if decoder.__class__ != encoder.__class__:
logger.info(
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
)
def tie_encoder_to_decoder_recursively(
decoder_pointer: nn.Module,
encoder_pointer: nn.Module,
module_name: str,
uninitialized_encoder_weights: List[str],
skip_key: str,
depth=0,
):
assert isinstance(decoder_pointer, nn.Module) and isinstance(
encoder_pointer, nn.Module
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
assert hasattr(encoder_pointer, "weight")
encoder_pointer.weight = decoder_pointer.weight
if hasattr(decoder_pointer, "bias"):
assert hasattr(encoder_pointer, "bias")
encoder_pointer.bias = decoder_pointer.bias
print(module_name + ' is tied')
return
encoder_modules = encoder_pointer._modules
decoder_modules = decoder_pointer._modules
if len(decoder_modules) > 0:
assert (
len(encoder_modules) > 0
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
all_encoder_weights = set([
module_name + "/" + sub_name
for sub_name in encoder_modules.keys()
])
encoder_layer_pos = 0
for name, module in decoder_modules.items():
if name.isdigit():
encoder_name = str(int(name) + encoder_layer_pos)
decoder_name = name
if not isinstance(
decoder_modules[decoder_name],
type(encoder_modules[encoder_name])) and len(
encoder_modules) != len(decoder_modules):
# this can happen if the name corresponds to the position in a list module list of layers
# in this case the decoder has added a cross-attention that the encoder does not have
# thus skip this step and subtract one layer pos from encoder
encoder_layer_pos -= 1
continue
elif name not in encoder_modules:
continue
elif depth > 500:
raise ValueError(
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
)
else:
decoder_name = encoder_name = name
tie_encoder_to_decoder_recursively(
decoder_modules[decoder_name],
encoder_modules[encoder_name],
module_name + "/" + name,
uninitialized_encoder_weights,
skip_key,
depth=depth + 1,
)
all_encoder_weights.remove(module_name + "/" + encoder_name)
uninitialized_encoder_weights += list(all_encoder_weights)
# tie weights recursively
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix,
uninitialized_encoder_weights, skip_key)
class GroupWiseLinear(nn.Module):
# could be changed to:
# output = torch.einsum('ijk,zjk->ij', x, self.W)
# or output = torch.einsum('ijk,jk->ij', x, self.W[0])
def __init__(self, num_class, hidden_dim, bias=True):
super().__init__()
self.num_class = num_class
self.hidden_dim = hidden_dim
self.bias = bias
self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim))
if bias:
self.b = nn.Parameter(torch.Tensor(1, num_class))
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.W.size(2))
for i in range(self.num_class):
self.W[0][i].data.uniform_(-stdv, stdv)
if self.bias:
for i in range(self.num_class):
self.b[0][i].data.uniform_(-stdv, stdv)
def forward(self, x):
# x: B,K,d
x = (self.W * x).sum(-1)
if self.bias:
x = x + self.b
return x
def init_tokenizer():
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer.add_special_tokens({'bos_token': '[DEC]'})
tokenizer.add_special_tokens({'additional_special_tokens': ['[ENC]']})
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
return tokenizer
def create_vit(vit,
image_size,
use_grad_checkpointing=False,
ckpt_layer=0,
drop_path_rate=0):
assert vit in ['base', 'large'], "vit parameter must be base or large"
if vit == 'base':
vision_width = 768
visual_encoder = VisionTransformer(
img_size=image_size,
patch_size=16,
embed_dim=vision_width,
depth=12,
num_heads=12,
use_grad_checkpointing=use_grad_checkpointing,
ckpt_layer=ckpt_layer,
drop_path_rate=0 or drop_path_rate)
elif vit == 'large':
vision_width = 1024
visual_encoder = VisionTransformer(
img_size=image_size,
patch_size=16,
embed_dim=vision_width,
depth=24,
num_heads=16,
use_grad_checkpointing=use_grad_checkpointing,
ckpt_layer=ckpt_layer,
drop_path_rate=0.1 or drop_path_rate)
return visual_encoder, vision_width
def is_url(url_or_filename):
parsed = urlparse(url_or_filename)
return parsed.scheme in ("http", "https")
def load_checkpoint(model, url_or_filename):
if is_url(url_or_filename):
cached_file = download_cached_file(url_or_filename,
check_hash=False,
progress=True)
checkpoint = torch.load(cached_file, map_location='cpu')
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location='cpu')
else:
raise RuntimeError('checkpoint url or path is invalid')
state_dict = checkpoint['model']
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(
state_dict['visual_encoder.pos_embed'], model.visual_encoder)
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(
state_dict['visual_encoder_m.pos_embed'], model.visual_encoder_m)
for key in model.state_dict().keys():
if key in state_dict.keys():
if state_dict[key].shape != model.state_dict()[key].shape:
del state_dict[key]
msg = model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s' % url_or_filename)
return model, msg
def load_checkpoint_swinbase(model, url_or_filename, kwargs):
if kwargs['image_size'] == 224:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
elif kwargs['image_size'] == 384:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
window_size = read_json(vision_config_path)['window_size']
print('--------------')
print(url_or_filename)
print('--------------')
if is_url(url_or_filename):
cached_file = download_cached_file(url_or_filename,
check_hash=False,
progress=True)
checkpoint = torch.load(cached_file, map_location='cpu')
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location='cpu')
else:
raise RuntimeError('checkpoint url or path is invalid')
state_dict = checkpoint['model']
for k in list(state_dict.keys()):
if 'relative_position_bias_table' in k:
dst_num_pos = (2 * window_size - 1)**2
state_dict[k] = interpolate_relative_pos_embed(state_dict[k],
dst_num_pos,
param_name=k)
elif ('relative_position_index' in k) or ('attn_mask' in k):
del state_dict[k]
elif "vision_multi" in k:
state_dict[k.replace("vision_multi",
"tagging_head")] = state_dict.pop(k)
msg = model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s' % url_or_filename)
return model, msg
def load_checkpoint_swinlarge(model, url_or_filename, kwargs):
if kwargs['image_size'] == 224:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_224.json'
elif kwargs['image_size'] == 384:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_384.json'
window_size = read_json(vision_config_path)['window_size']
print('--------------')
print(url_or_filename)
print('--------------')
if is_url(url_or_filename):
cached_file = download_cached_file(url_or_filename,
check_hash=False,
progress=True)
checkpoint = torch.load(cached_file, map_location='cpu')
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location='cpu')
else:
raise RuntimeError('checkpoint url or path is invalid')
state_dict = checkpoint['model']
for k in list(state_dict.keys()):
if 'relative_position_bias_table' in k:
dst_num_pos = (2 * window_size - 1)**2
state_dict[k] = interpolate_relative_pos_embed(state_dict[k],
dst_num_pos,
param_name=k)
elif ('relative_position_index' in k) or ('attn_mask' in k):
del state_dict[k]
elif "vision_multi" in k:
state_dict[k.replace("vision_multi",
"tagging_head")] = state_dict.pop(k)
msg = model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s' % url_or_filename)
return model, msg
|