Spaces:
Runtime error
Runtime error
File size: 8,769 Bytes
e4bd7f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import dataclasses
from copy import deepcopy
from types import SimpleNamespace
from typing import List, Union, Dict, Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn, Tensor
from transformers import StoppingCriteria, StoppingCriteriaList
from eval_scripts.eval_utils import load_image, load_audio
from imagebind.models.image_bind import ModalityType
from bubogpt import BaseProcessor
Roles = SimpleNamespace(
HUMAN="Human",
ASSISTANT="Assistant"
)
class Message:
def __init__(self, role: str, content: Union[str, None]):
self.role = role
self.content = content
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
messages: List[Message]
sep: str = "###"
def get_prompt(self):
ret = self.system + self.sep
for message in self.messages:
if message.content:
ret += message.role + ": " + message.content + self.sep
else:
ret += message.role + ":"
return ret
def append_message(self, role, content):
self.messages.append(Message(role, content))
def copy(self):
return Conversation(
system=self.system,
messages=deepcopy(self.messages),
sep=self.sep)
def dict(self):
return {
"system": self.system,
"messages": [(msg.role, msg.content) for msg in self.messages],
"sep": self.sep
}
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
CONV_X = Conversation(
# system="Give the following ..."
# "You will be able to ... once I provide it to you. Please answer my questions.",
system="Give the following image: <Vision>ImageContent</Vision> or audio: <Audio>AudioContent</Audio>. "
"You will be able to see the image/audio once I provide it to you. Please answer my questions.",
messages=[],
sep="###",
)
# TODO: If needed and possible, rewrite this file and re-organize the definition of components.
class DummyChat:
def __init__(self, dummy_answer=None, *args, **kwargs):
self.dummy_answer = dummy_answer
def ask(self, text, conversation):
conversation.append_message(Roles.HUMAN, text)
def answer(self, *args, **kwargs):
if self.dummy_answer is not None:
return self.dummy_answer, None
else:
print(kwargs)
return kwargs["conversation"].messages[-1].content, None
def upload_img(self, *args, **kwargs):
pass
def upload_aud(self, *args, **kwargs):
pass
class Chat:
def __init__(self,
model: nn.Module,
processors: Dict[str, BaseProcessor],
device: str = 'cuda:0'
):
self.device = device
self.model = model
self.processors = processors
stop_words_ids = [torch.tensor([835]).to(self.device),
torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
self.just_uploaded = False
def ask(self, text, conversation):
# NOTE: the hard code for postfix is removed.
# end_token = '</Vision>'
# if len(conversation.messages) > 0 and conversation.messages[-1].role == Roles.HUMAN \
# and conversation.messages[-1].content[-len(end_token):] == end_token:
if self.just_uploaded:
conversation.messages[-1].content = ' '.join([conversation.messages[-1].content, text])
self.just_uploaded = False
else:
conversation.append_message(Roles.HUMAN, text)
def answer(self, conversation, emb_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9,
repetition_penalty=1.0, length_penalty=1, temperature=1.0, max_length=2000):
# Generate an answer written by LLaMA
conversation.append_message(Roles.ASSISTANT, None)
embs = self.get_context_emb(conversation, emb_list)
current_max_len = embs.shape[1] + max_new_tokens
if current_max_len - max_length > 0:
print('Warning: The number of tokens in current conversation exceeds the max length. '
'The model will not see the contexts outside the range.')
begin_idx = max(0, current_max_len - max_length)
embs = embs[:, begin_idx:]
outputs = self.model.llama_model.generate(
inputs_embeds=embs,
max_new_tokens=max_new_tokens,
stopping_criteria=self.stopping_criteria,
num_beams=num_beams,
do_sample=True,
min_length=min_length,
top_p=top_p,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
temperature=temperature,
)
output_token = outputs[0]
if output_token[0] == 0: # the model might output a unknown token <unk> at the beginning. remove it
output_token = output_token[1:]
if output_token[0] == 1: # some users find that there is a start token <s> at the beginning. remove it
output_token = output_token[1:]
output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
output_text = output_text.split('###')[0] # remove the stop sign '###'
output_text = output_text.split('Assistant:')[-1].strip()
conversation.messages[-1].content = output_text
return output_text, output_token.cpu().numpy()
def upload_img(self, image: Union[str, Image.Image, Tensor], conversation: Conversation, emb_list: List[Tensor]):
# Upload Image, Encode Image and Create a new message from human.
image = load_image(image, self.processors[ModalityType.VISION]).to(self.device)
if hasattr(self.model, "encode_img"):
# To compitable with minigpt4
image_emb, _ = self.model.encode_img(image)
else:
all_embeddings = self.model.encode_inputs({ModalityType.VISION: image})
image_emb = all_embeddings[ModalityType.VISION]
emb_list.append(image_emb)
conversation.append_message(Roles.HUMAN, "<Vision><ModalityHere></Vision>")
self.just_uploaded = True
# def upload_img_mini(self, image: Union[str, Image.Image, Tensor], conversation: Conversation, emb_list: List[Tensor]):
# # Upload Image, Encode Image and Create a new message from human.
# image = load_image(image, self.processors[ModalityType.VISION]).to(self.device)
# image_emb, _ = self.model.encode_img(image)
# emb_list.append(image_emb)
# conversation.append_message(Roles.HUMAN, "<Vision><ModalityHere></Vision>")
def upload_aud(self, audio: Union[str, Tuple[int, np.ndarray]], conversation: Conversation, emb_list: List[Tensor]):
# Upload Audio, Encode Audio and Create a new message from human.
audio = load_audio(audio, self.processors[ModalityType.AUDIO]).to(self.device)
audio = audio.float()
all_embeddings = self.model.encode_inputs({ModalityType.AUDIO: audio})
audio_emb = all_embeddings[ModalityType.AUDIO]
emb_list.append(audio_emb)
conversation.append_message(Roles.HUMAN, "<Audio><ModalityHere></Audio>")
self.just_uploaded = True
def get_context_emb(self, conversation: Conversation, emb_list: List[Tensor]):
# Insert the embeddings into the prompts and queries.
# NOTE: Assume the placeholders have been aligned to the embeddings!
prompt = conversation.get_prompt()
print(prompt)
prompt_segs = prompt.split('<ModalityHere>')
assert len(prompt_segs) == len(emb_list) + 1, "Unmatched numbers of placeholders and embeddings."
seg_tokens = [
self.model.llama_tokenizer(
seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
# only add bos to the first seg
for i, seg in enumerate(prompt_segs)
]
seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens]
mixed_embs = [emb for pair in zip(seg_embs[:-1], emb_list) for emb in pair] + [seg_embs[-1]]
mixed_embs = torch.cat(mixed_embs, dim=1)
return mixed_embs |