File size: 7,863 Bytes
e4bd7f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import logging
import os

import numpy as np
import torch
import torch.nn as nn
from bubogpt.common.dist_utils import download_cached_file, is_dist_avail_and_initialized
from bubogpt.common.utils import get_abs_path, is_url
from omegaconf import OmegaConf


class BaseModel(nn.Module):
    """Base class for models."""

    def __init__(self):
        super().__init__()

    @property
    def device(self):
        return list(self.parameters())[0].device

    def load_checkpoint(self, url_or_filename):
        """
        Load from a finetuned checkpoint.

        This should expect no mismatch in the model keys and the checkpoint keys.
        """

        if is_url(url_or_filename):
            cached_file = download_cached_file(
                url_or_filename, check_hash=False, progress=True
            )
            checkpoint = torch.load(cached_file, map_location="cpu")
        elif os.path.isfile(url_or_filename):
            checkpoint = torch.load(url_or_filename, map_location="cpu")
        else:
            raise RuntimeError("checkpoint url or path is invalid")

        if "model" in checkpoint.keys():
            state_dict = checkpoint["model"]
        else:
            state_dict = checkpoint

        msg = self.load_state_dict(state_dict, strict=False)

        logging.info("Missing keys {}".format(msg.missing_keys))
        logging.info("load checkpoint from %s" % url_or_filename)

        return msg

    @classmethod
    def from_pretrained(cls, model_type):
        """
        Build a pretrained model from default configuration file, specified by model_type.

        Args:
            - model_type (str): model type, specifying architecture and checkpoints.

        Returns:
            - model (nn.Module): pretrained or finetuned model, depending on the configuration.
        """
        model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model
        model = cls.from_config(model_cfg)

        return model

    @classmethod
    def default_config_path(cls, model_type):
        assert (
            model_type in cls.PRETRAINED_MODEL_CONFIG_DICT
        ), "Unknown model type {}".format(model_type)
        return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])

    def load_checkpoint_from_config(self, cfg, **kwargs):
        """
        Load checkpoint as specified in the config file.

        If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model.
        When loading the pretrained model, each task-specific architecture may define their
        own load_from_pretrained() method.
        """
        load_finetuned = cfg.get("load_finetuned", True)
        if load_finetuned:
            finetune_path = cfg.get("finetuned", None)
            assert (
                finetune_path is not None
            ), "Found load_finetuned is True, but finetune_path is None."
            self.load_checkpoint(url_or_filename=finetune_path)
        else:
            # load pre-trained weights
            pretrain_path = cfg.get("pretrained", None)
            assert "Found load_finetuned is False, but pretrain_path is None."
            self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs)

    def before_evaluation(self, **kwargs):
        pass

    def show_n_params(self, return_str=True):
        tot = 0
        for p in self.parameters():
            w = 1
            for x in p.shape:
                w *= x
            tot += w
        if return_str:
            if tot >= 1e6:
                return "{:.1f}M".format(tot / 1e6)
            else:
                return "{:.1f}K".format(tot / 1e3)
        else:
            return tot


class BaseEncoder(nn.Module):
    """
    Base class for primitive encoders, such as ViT, TimeSformer, etc.
    """

    def __init__(self):
        super().__init__()

    def forward_features(self, samples, **kwargs):
        raise NotImplementedError

    @property
    def device(self):
        return list(self.parameters())[0].device


class SharedQueueMixin:
    @torch.no_grad()
    def _dequeue_and_enqueue(self, image_feat, text_feat, idxs=None):
        # gather keys before updating queue
        image_feats = concat_all_gather(image_feat)
        text_feats = concat_all_gather(text_feat)

        batch_size = image_feats.shape[0]

        ptr = int(self.queue_ptr)
        assert self.queue_size % batch_size == 0  # for simplicity

        # replace the keys at ptr (dequeue and enqueue)
        self.image_queue[:, ptr : ptr + batch_size] = image_feats.T
        self.text_queue[:, ptr : ptr + batch_size] = text_feats.T

        if idxs is not None:
            idxs = concat_all_gather(idxs)
            self.idx_queue[:, ptr : ptr + batch_size] = idxs.T

        ptr = (ptr + batch_size) % self.queue_size  # move pointer
        self.queue_ptr[0] = ptr


class MomentumDistilationMixin:
    @torch.no_grad()
    def copy_params(self):
        for model_pair in self.model_pairs:
            for param, param_m in zip(
                model_pair[0].parameters(), model_pair[1].parameters()
            ):
                param_m.data.copy_(param.data)  # initialize
                param_m.requires_grad = False  # not update by gradient

    @torch.no_grad()
    def _momentum_update(self):
        for model_pair in self.model_pairs:
            for param, param_m in zip(
                model_pair[0].parameters(), model_pair[1].parameters()
            ):
                param_m.data = param_m.data * self.momentum + param.data * (
                    1.0 - self.momentum
                )


class GatherLayer(torch.autograd.Function):
    """
    Gather tensors from all workers with support for backward propagation:
    This implementation does not cut the gradients as torch.distributed.all_gather does.
    """

    @staticmethod
    def forward(ctx, x):
        output = [
            torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())
        ]
        torch.distributed.all_gather(output, x)
        return tuple(output)

    @staticmethod
    def backward(ctx, *grads):
        all_gradients = torch.stack(grads)
        torch.distributed.all_reduce(all_gradients)
        return all_gradients[torch.distributed.get_rank()]


def all_gather_with_grad(tensors):
    """
    Performs all_gather operation on the provided tensors.
    Graph remains connected for backward grad computation.
    """
    # Queue the gathered tensors
    world_size = torch.distributed.get_world_size()
    # There is no need for reduction in the single-proc case
    if world_size == 1:
        return tensors

    # tensor_all = GatherLayer.apply(tensors)
    tensor_all = GatherLayer.apply(tensors)

    return torch.cat(tensor_all, dim=0)


@torch.no_grad()
def concat_all_gather(tensor):
    """
    Performs all_gather operation on the provided tensors.
    *** Warning ***: torch.distributed.all_gather has no gradient.
    """
    # if use distributed training
    if not is_dist_avail_and_initialized():
        return tensor

    tensors_gather = [
        torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())
    ]
    torch.distributed.all_gather(tensors_gather, tensor, async_op=False)

    output = torch.cat(tensors_gather, dim=0)
    return output


def tile(x, dim, n_tile):
    init_dim = x.size(dim)
    repeat_idx = [1] * x.dim()
    repeat_idx[dim] = n_tile
    x = x.repeat(*(repeat_idx))
    order_index = torch.LongTensor(
        np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])
    )
    return torch.index_select(x, dim, order_index.to(x.device))