BuboGPT / bubogpt /models /blip2_outputs.py
ikuinen99's picture
update
e4bd7f9
raw
history blame
4.15 kB
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
from dataclasses import dataclass
from typing import Optional
import torch
from transformers.modeling_outputs import (
ModelOutput,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
)
@dataclass
class BlipSimilarity(ModelOutput):
sim_i2t: torch.FloatTensor = None
sim_t2i: torch.FloatTensor = None
sim_i2t_m: Optional[torch.FloatTensor] = None
sim_t2i_m: Optional[torch.FloatTensor] = None
sim_i2t_targets: Optional[torch.FloatTensor] = None
sim_t2i_targets: Optional[torch.FloatTensor] = None
@dataclass
class BlipIntermediateOutput(ModelOutput):
"""
Data class for intermediate outputs of BLIP models.
image_embeds (torch.FloatTensor): Image embeddings, shape (batch_size, num_patches, embed_dim).
text_embeds (torch.FloatTensor): Text embeddings, shape (batch_size, seq_len, embed_dim).
image_embeds_m (torch.FloatTensor): Image embeddings from momentum visual encoder, shape (batch_size, num_patches, embed_dim).
text_embeds_m (torch.FloatTensor): Text embeddings from momentum text encoder, shape (batch_size, seq_len, embed_dim).
encoder_output (BaseModelOutputWithPoolingAndCrossAttentions): output from the image-grounded text encoder.
encoder_output_neg (BaseModelOutputWithPoolingAndCrossAttentions): output from the image-grounded text encoder for negative pairs.
decoder_output (CausalLMOutputWithCrossAttentions): output from the image-grounded text decoder.
decoder_labels (torch.LongTensor): labels for the captioning loss.
itm_logits (torch.FloatTensor): logits for the image-text matching loss, shape (batch_size * 3, 2).
itm_labels (torch.LongTensor): labels for the image-text matching loss, shape (batch_size * 3,)
"""
# uni-modal features
image_embeds: torch.FloatTensor = None
text_embeds: Optional[torch.FloatTensor] = None
image_embeds_m: Optional[torch.FloatTensor] = None
text_embeds_m: Optional[torch.FloatTensor] = None
# intermediate outputs of multimodal encoder
encoder_output: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None
encoder_output_neg: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None
itm_logits: Optional[torch.FloatTensor] = None
itm_labels: Optional[torch.LongTensor] = None
# intermediate outputs of multimodal decoder
decoder_output: Optional[CausalLMOutputWithCrossAttentions] = None
decoder_labels: Optional[torch.LongTensor] = None
@dataclass
class BlipOutput(ModelOutput):
# some finetuned models (e.g. BlipVQA) do not compute similarity, thus optional.
sims: Optional[BlipSimilarity] = None
intermediate_output: BlipIntermediateOutput = None
loss: Optional[torch.FloatTensor] = None
loss_itc: Optional[torch.FloatTensor] = None
loss_itm: Optional[torch.FloatTensor] = None
loss_lm: Optional[torch.FloatTensor] = None
@dataclass
class BlipOutputFeatures(ModelOutput):
"""
Data class of features from BlipFeatureExtractor.
Args:
image_embeds: (torch.FloatTensor) of shape (batch_size, num_patches+1, embed_dim), optional
image_features: (torch.FloatTensor) of shape (batch_size, num_patches+1, feature_dim), optional
text_embeds: (torch.FloatTensor) of shape (batch_size, sequence_length+1, embed_dim), optional
text_features: (torch.FloatTensor) of shape (batch_size, sequence_length+1, feature_dim), optional
The first embedding or feature is for the [CLS] token.
Features are obtained by projecting the corresponding embedding into a normalized low-dimensional space.
"""
image_embeds: Optional[torch.FloatTensor] = None
image_embeds_proj: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
text_embeds_proj: Optional[torch.FloatTensor] = None
multimodal_embeds: Optional[torch.FloatTensor] = None