BuboGPT / ram /models /ram.py
ikuinen99's picture
update
e4bd7f9
raw
history blame
10.9 kB
'''
* The Recognize Anything Model (RAM)
* Written by Xinyu Huang
'''
import json
import warnings
import numpy as np
import torch
from torch import nn
from .bert import BertConfig, BertLMHeadModel, BertModel
from .swin_transformer import SwinTransformer
from .utils import *
warnings.filterwarnings("ignore")
class RAM(nn.Module):
def __init__(self,
med_config=f'{CONFIG_PATH}/configs/med_config.json',
image_size=384,
vit='base',
vit_grad_ckpt=False,
vit_ckpt_layer=0,
prompt='a picture of ',
threshold=0.68,
delete_tag_index=[],
tag_list=f'{CONFIG_PATH}/data/ram_tag_list.txt',
tag_list_chinese=f'{CONFIG_PATH}/data/ram_tag_list_chinese.txt'):
r""" The Recognize Anything Model (RAM) inference module.
RAM is a strong image tagging model, which can recognize any common category with high accuracy.
Described in the paper " Recognize Anything: A Strong Image Tagging Model" https://recognize-anything.github.io/
Args:
med_config (str): path for the mixture of encoder-decoder model's configuration file
image_size (int): input image size
vit (str): model size of vision transformer
threshold (int): tagging threshold
delete_tag_index (list): delete some tags that may disturb captioning
"""
super().__init__()
# create image encoder
if vit == 'swin_b':
if image_size == 224:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
elif image_size == 384:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
vision_config = read_json(vision_config_path)
assert image_size == vision_config['image_res']
# assert config['patch_size'] == 32
vision_width = vision_config['vision_width']
self.visual_encoder = SwinTransformer(
img_size=vision_config['image_res'],
patch_size=4,
in_chans=3,
embed_dim=vision_config['embed_dim'],
depths=vision_config['depths'],
num_heads=vision_config['num_heads'],
window_size=vision_config['window_size'],
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.0,
drop_path_rate=0.1,
ape=False,
patch_norm=True,
use_checkpoint=False)
elif vit == 'swin_l':
if image_size == 224:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_224.json'
elif image_size == 384:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_384.json'
vision_config = read_json(vision_config_path)
assert image_size == vision_config['image_res']
# assert config['patch_size'] == 32
vision_width = vision_config['vision_width']
self.visual_encoder = SwinTransformer(
img_size=vision_config['image_res'],
patch_size=4,
in_chans=3,
embed_dim=vision_config['embed_dim'],
depths=vision_config['depths'],
num_heads=vision_config['num_heads'],
window_size=vision_config['window_size'],
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.0,
drop_path_rate=0.1,
ape=False,
patch_norm=True,
use_checkpoint=False)
else:
self.visual_encoder, vision_width = create_vit(
vit, image_size, vit_grad_ckpt, vit_ckpt_layer)
# create tokenzier
self.tokenizer = init_tokenizer()
# Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder
# create image-tag interaction encoder
encoder_config = BertConfig.from_json_file(med_config)
encoder_config.encoder_width = 512
self.tag_encoder = BertModel(config=encoder_config,
add_pooling_layer=False)
# create image-tag-text decoder
decoder_config = BertConfig.from_json_file(med_config)
self.text_decoder = BertLMHeadModel(config=decoder_config)
self.delete_tag_index = delete_tag_index
self.prompt = prompt
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
# load tag list
self.tag_list = self.load_tag_list(tag_list)
self.tag_list_chinese = self.load_tag_list(tag_list_chinese)
# create image-tag recognition decoder
self.threshold = threshold
self.num_class = len(self.tag_list)
q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json')
q2l_config.encoder_width = 512
self.tagging_head = BertModel(config=q2l_config,
add_pooling_layer=False)
self.tagging_head.resize_token_embeddings(len(self.tokenizer))
# self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
self.label_embed = nn.Parameter(torch.zeros(self.num_class, q2l_config.encoder_width))
if q2l_config.hidden_size != 512:
self.wordvec_proj = nn.Linear(512, q2l_config.hidden_size)
else:
self.wordvec_proj = nn.Identity()
self.fc = nn.Linear(q2l_config.hidden_size, 1)
self.del_selfattention()
# share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder"
tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '',
' ')
self.image_proj = nn.Linear(vision_width, 512)
# self.label_embed = nn.Parameter(torch.load(f'{CONFIG_PATH}/data/textual_label_embedding.pth',map_location='cpu').float())
# adjust thresholds for some tags
self.class_threshold = torch.ones(self.num_class) * self.threshold
ram_class_threshold_path = f'{CONFIG_PATH}/data/ram_tag_list_threshold.txt'
with open(ram_class_threshold_path, 'r', encoding='utf-8') as f:
ram_class_threshold = [float(s.strip()) for s in f]
for key,value in enumerate(ram_class_threshold):
self.class_threshold[key] = value
def load_tag_list(self, tag_list_file):
with open(tag_list_file, 'r', encoding="utf-8") as f:
tag_list = f.read().splitlines()
tag_list = np.array(tag_list)
return tag_list
# delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label
def del_selfattention(self):
del self.tagging_head.embeddings
for layer in self.tagging_head.encoder.layer:
del layer.attention
def generate_tag(self,
image,
threshold=0.68,
tag_input=None,
):
label_embed = torch.nn.functional.relu(self.wordvec_proj(self.label_embed))
image_embeds = self.image_proj(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(image.device)
# recognized image tags using image-tag recogntiion decoder
image_cls_embeds = image_embeds[:, 0, :]
image_spatial_embeds = image_embeds[:, 1:, :]
bs = image_spatial_embeds.shape[0]
label_embed = label_embed.unsqueeze(0).repeat(bs, 1, 1)
tagging_embed = self.tagging_head(
encoder_embeds=label_embed,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=False,
mode='tagging',
)
logits = self.fc(tagging_embed[0]).squeeze(-1)
targets = torch.where(
torch.sigmoid(logits) > self.class_threshold.to(image.device),
torch.tensor(1.0).to(image.device),
torch.zeros(self.num_class).to(image.device))
tag = targets.cpu().numpy()
tag[:,self.delete_tag_index] = 0
tag_output = []
tag_output_chinese = []
for b in range(bs):
index = np.argwhere(tag[b] == 1)
token = self.tag_list[index].squeeze(axis=1)
tag_output.append(' | '.join(token))
token_chinese = self.tag_list_chinese[index].squeeze(axis=1)
tag_output_chinese.append(' | '.join(token_chinese))
return tag_output, tag_output_chinese
def generate_tag_openset(self,
image,
threshold=0.68,
tag_input=None,
):
label_embed = torch.nn.functional.relu(self.wordvec_proj(self.label_embed))
image_embeds = self.image_proj(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(image.device)
# recognized image tags using image-tag recogntiion decoder
image_cls_embeds = image_embeds[:, 0, :]
image_spatial_embeds = image_embeds[:, 1:, :]
bs = image_spatial_embeds.shape[0]
label_embed = label_embed.unsqueeze(0).repeat(bs, 1, 1)
tagging_embed = self.tagging_head(
encoder_embeds=label_embed,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=False,
mode='tagging',
)
logits = self.fc(tagging_embed[0]).squeeze(-1)
targets = torch.where(
torch.sigmoid(logits) > self.class_threshold.to(image.device),
torch.tensor(1.0).to(image.device),
torch.zeros(self.num_class).to(image.device))
tag = targets.cpu().numpy()
tag[:,self.delete_tag_index] = 0
tag_output = []
for b in range(bs):
index = np.argwhere(tag[b] == 1)
token = self.tag_list[index].squeeze(axis=1)
tag_output.append(' | '.join(token))
return tag_output
# load RAM pretrained model parameters
def ram(pretrained='', **kwargs):
model = RAM(**kwargs)
if pretrained:
if kwargs['vit'] == 'swin_b':
model, msg = load_checkpoint_swinbase(model, pretrained, kwargs)
elif kwargs['vit'] == 'swin_l':
model, msg = load_checkpoint_swinlarge(model, pretrained, kwargs)
else:
model, msg = load_checkpoint(model, pretrained)
print('vit:', kwargs['vit'])
# print('msg', msg)
return model