File size: 11,027 Bytes
228ea6c 62f4be8 228ea6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import os
import torch
import json
import time
import random
import streamlit as st
import firebase_admin
import logging
from firebase_admin import credentials, firestore
from dotenv import load_dotenv
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
import plotly.graph_objects as go
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)
load_dotenv()
def load_credentials():
try:
with open('public_creds.json') as f:
credentials_dict = json.load(f)
secret = {
'private_key_id': os.environ.get('private_key_id'),
'private_key': os.environ.get('private_key')
}
credentials_dict.update(secret)
return credentials_dict
except Exception as e:
logging.error(f'Error while loading credentials: {e}')
return None
def connect_to_db(credentials_dict):
try:
cred = credentials.Certificate(credentials_dict)
if not firebase_admin._apps:
firebase_admin.initialize_app(cred)
logging.info('Established connection to db!')
return firestore.client()
except Exception as e:
logging.error(f'Error while connecting to db: {e}')
return None
def get_statements_from_db(db):
try:
document = db.collection('ItemDesirability').document('Items')
statements = document.get().to_dict()['statements']
logging.info(f'Retrieved {len(statements)} statements from db!')
return statements
except Exception as e:
logging.error(f'Error while retrieving items from db: {e}')
return None
def update_db(db, payload):
try:
collection_ref = db.collection('ItemDesirability')
doc_ref = collection_ref.document('Responses')
doc = doc_ref.get()
if doc.exists:
doc_ref.update({
'Data': firestore.ArrayUnion([payload])
})
else:
doc_ref.set({
'Data': [payload]
})
logging.info(f'Sent payload to db!')
return True
except Exception as e:
logging.error(f'Error while sending payload to db: {e}')
return False
def pick_random(input_list):
try:
return random.choice(input_list)
except Exception as e:
logging.error(f'Error while picking random statement: {e}')
return None
def z_score(y, mean=.04853076, sd=.9409466):
return (y - mean) / sd
def score_text(input_text):
classifier_output = st.session_state.classifier(input_text)
classifier_output_dict = {x['label']: x['score'] for x in classifier_output[0]}
sentiment = classifier_output_dict['positive'] - classifier_output_dict['negative']
inputs = st.session_state.tokenizer(text=input_text, padding=True, return_tensors='pt')
with torch.no_grad():
score = st.session_state.model(**inputs).logits.squeeze().tolist()
desirability = z_score(score)
return sentiment, desirability
def indicator_plot(value, title, value_range, domain):
plot = go.Indicator(
mode = "gauge+delta",
value = value,
domain = domain,
title = title,
delta = {
'reference': 0,
'decreasing': {'color': "#ec4899"},
'increasing': {'color': "#36def1"}
},
gauge = {
'axis': {'range': value_range, 'tickwidth': 1, 'tickcolor': "black"},
'bar': {'color': "#4361ee"},
'bgcolor': "white",
'borderwidth': 2,
'bordercolor': "#efefef",
'steps': [
{'range': [value_range[0], 0], 'color': '#efefef'},
{'range': [0, value_range[1]], 'color': '#efefef'}
],
'threshold': {
'line': {'color': "#4361ee", 'width': 8},
'thickness': 0.75,
'value': value
}
}
)
return plot
def show_scores(sentiment, desirability, input_text):
p1 = indicator_plot(
value=sentiment,
title=f'Item Sentiment',
value_range=[-1, 1],
domain={'x': [0, .45], 'y': [0, 1]},
)
p2 = indicator_plot(
value=desirability,
title=f'Item Desirability',
value_range=[-4, 4],
domain={'x': [.55, 1], 'y': [0, 1]}
)
fig = go.Figure()
fig.add_trace(p1)
fig.add_trace(p2)
fig.update_layout(
title=dict(text=f'"{input_text}"', font=dict(size=36),yref='paper'),
paper_bgcolor = "white",
font = {'color': "black", 'family': "Arial"})
st.plotly_chart(fig, theme=None, use_container_width=True)
st.markdown("""
Item sentiment: Absolute differences between positive and negative sentiment.
Item desirability: z-transformed values, 0 indicated "neutral".
""")
def update_statement_placeholder(placeholder):
placeholder.markdown(
body=f"""
Is it socially desirable or undesirable to endorse the following statement?
### <center>\"{st.session_state.current_statement.capitalize()}\"</center>
""",
unsafe_allow_html=True
)
def show():
credentials_dict = load_credentials()
connection_attempts = 0
if 'db' not in st.session_state:
st.session_state.db = None
while st.session_state.db is None and connection_attempts < 3:
st.session_state.db = connect_to_db(credentials_dict)
if st.session_state.db is None:
logging.info('Retrying to connect to db...')
connection_attempts += 1
time.sleep(1)
retrieval_attempts = 0
if 'statements' not in st.session_state:
st.session_state.statements = None
if 'current_statement' not in st.session_state:
st.session_state.current_statement = None
while st.session_state.statements is None and retrieval_attempts < 3:
st.session_state.statements = get_statements_from_db(st.session_state.db)
st.session_state.current_statement = pick_random(st.session_state.statements)
if st.session_state.statements is None:
logging.info('Retrying to retrieve statements from db...')
retrieval_attempts += 1
time.sleep(1)
st.markdown("""
## Try it yourself!
Use the text field below to enter a statement that might be part of a psychological questionnaire (e.g., "I love a good fight.").
The left dial indicates how socially desirable it might be to endorse this item.
The right dial indicates sentiment (i.e., valence) as estimated by regular sentiment analysis (using the `cardiffnlp/twitter-xlm-roberta-base-sentiment` model).
""")
if st.session_state.db:
collect_data = st.checkbox(
label='I want to support and help improve this research.',
value=True
)
else:
collect_data = False
if st.session_state.db and collect_data:
statement_placeholder = st.empty()
update_statement_placeholder(statement_placeholder)
rating_options = ['[Please select]', 'Very undesirable', 'Undesirable', 'Neutral', 'Desirable', 'Very desirable']
selected_rating = st.selectbox(
label='Rate the statement above according to whether it is socially desirable or undesirable.',
options=rating_options,
index=0
)
suitability_options = ['No, I\'m just playing around', 'Yes, my input can help improve this research']
research_suitability = st.radio(
label='Is your input suitable for research purposes?',
options=suitability_options,
horizontal=True
)
with st.spinner('Loading the model might take a couple of seconds...'):
st.markdown("### Estimate item desirability")
if os.environ.get('item-desirability'):
model_path = 'magnolia-psychometrics/item-desirability'
else:
model_path = os.getenv('model_path')
auth_token = os.environ.get('item-desirability') or True
if 'tokenizer' not in st.session_state:
st.session_state.tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=model_path,
use_fast=True,
use_auth_token=auth_token
)
if 'model' not in st.session_state:
st.session_state.model = AutoModelForSequenceClassification.from_pretrained(
pretrained_model_name_or_path=model_path,
num_labels=1,
ignore_mismatched_sizes=True,
use_auth_token=auth_token
)
## sentiment model
if 'classifier' not in st.session_state:
st.session_state.sentiment_model = 'cardiffnlp/twitter-xlm-roberta-base-sentiment'
st.session_state.classifier = pipeline(
task='sentiment-analysis',
model=st.session_state.sentiment_model,
tokenizer=st.session_state.sentiment_model,
use_fast=False,
top_k=3
)
input_text = st.text_input(
label='Item text/statement:',
value='I love a good fight.',
placeholder='Enter item text'
)
if st.button(label='Evaluate Item Text', type="primary", use_container_width=True):
if collect_data and st.session_state.db:
if selected_rating != rating_options[0]:
item_rating = rating_options.index(selected_rating)
suitability_rating = suitability_options.index(research_suitability)
sentiment, desirability = score_text(input_text)
payload = {
'user_id': st.session_state.user_id,
'statement': st.session_state.current_statement,
'rating': item_rating,
'suitability': suitability_rating,
'input_text': input_text,
'sentiment': sentiment,
'desirability': desirability,
}
update_success = update_db(
db=st.session_state.db,
payload=payload
)
if update_success:
st.session_state.current_statement = pick_random(st.session_state.statements)
update_statement_placeholder(statement_placeholder)
show_scores(sentiment, desirability, input_text)
else:
st.error('Please rate the statement presented above!')
else:
sentiment, desirability = score_text(input_text)
show_scores(sentiment, desirability, input_text) |