magnolia-pm's picture
added scatter plot
a746976
raw
history blame
7.89 kB
import os
import torch
import dash
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import plotly.express as px
def z_score(y, mean=.04853076, sd=.9409466):
return (y - mean) / sd
def indicator_plot(value, title, value_range, domain):
plot = go.Indicator(
mode = "gauge+delta",
value = value,
domain = domain,
title = title,
delta = {
'reference': 0,
'decreasing': {'color': "#ec4899"},
'increasing': {'color': "#36def1"}
},
gauge = {
'axis': {'range': value_range, 'tickwidth': 1, 'tickcolor': "black"},
'bar': {'color': "#4361ee"},
'bgcolor': "white",
'borderwidth': 2,
'bordercolor': "#efefef",
'steps': [
{'range': [value_range[0], 0], 'color': '#efefef'},
{'range': [0, value_range[1]], 'color': '#efefef'}
],
'threshold': {
'line': {'color': "#4361ee", 'width': 8},
'thickness': 0.75,
'value': value
}
}
)
return plot
def scatter_plot(df, group_var):
colors = ['#36def1', '#4361ee'] if group_var else ['#4361ee']
plot = px.scatter(
df,
x='Machine-ratings',
y='Human-ratings',
color=group_var,
facet_col='x_group',
facet_col_wrap=2,
trendline='ols',
trendline_scope='trace',
hover_data={
'Text': df.text,
'Language': False,
'x_group': False,
'Human-ratings': ':.2f',
'Machine-ratings': ':.2f',
'Study': df.study,
'Instrument': df.instrument,
},
width=400,
height=400,
color_discrete_sequence=colors
)
plot.for_each_annotation(lambda a: a.update(text=a.text.split('=')[-1]))
plot.update_layout(
legend={
'orientation':'h',
'yanchor': 'bottom',
'y': -.30
})
plot.update_xaxes(title_standoff = 0)
return plot
# data import and wrangling
covariate_columns = {
'content_domain': 'Content Domain',
'language': 'Language',
'rater_group': 'Rater Group',
}
df = (
pd
.read_feather(path='data.feather').query('partition == "test" | partition == "dev"')
.melt(
value_vars=['sentiment_model', 'desirability_model'],
var_name='x_group',
value_name='x',
id_vars=['mean_z', 'text', 'content_domain', 'language', 'rater_group', 'study', 'instrument']
)
.replace(
to_replace={
'en': 'English',
'de': 'German',
'other': 'Other',
'personality': 'Personality',
'laypeople': 'Laypeople',
'students': 'Students',
'sentiment_model': 'Sentiment Model',
'desirability_model': 'Desirability Model'
}
)
.rename(columns=covariate_columns)
.rename(
columns={
'mean_z': 'Human-ratings',
'x': 'Machine-ratings',
}
)
)
st.markdown("""
# NLP for Item Desirability Ratings
This web application accompanies the paper "*Expanding the Methodological Toolbox: Machine-Based Item Desirability Ratings as an Alternative to Human-Based Ratings*".
## What is this research about?
Researchers use personality scales to measure people's traits and behaviors, but biases can affect the accuracy of these scales.
Socially desirable responding is a common bias that can skew results. To overcome this, researchers gather item desirability ratings, e.g., to ensure that questions are neutral.
Recently, advancements in natural language processing have made it possible to use machines to estimate social desirability ratings,
which can provide a viable alternative to human ratings and help researchers, scale developers, and practitioners improve the accuracy of personality scales.
""")
# demo
st.markdown("""
## Try it yourself!
Use the text field below to enter a statement that might be part of a psychological questionnaire (e.g., "I love a good fight.").
The left dial indicates how socially desirable it might be to endorse this item.
The right dial indicates sentiment (i.e., valence) as estimated by regular sentiment analysis (using the `cardiffnlp/twitter-xlm-roberta-base-sentiment` model).
""")
## desirability model
with st.spinner('Processing...'):
if os.environ.get('item-desirability'):
model_path = 'magnolia-psychometrics/item-desirability'
else:
model_path = '/nlp/nlp/models/finetuned/twitter-xlm-roberta-base-regressive-desirability-ft-4'
auth_token = os.environ.get('item-desirability') or True
if 'tokenizer' not in globals():
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=model_path,
use_fast=True,
use_auth_token=auth_token
)
if 'model' not in globals():
model = AutoModelForSequenceClassification.from_pretrained(
pretrained_model_name_or_path=model_path,
num_labels=1,
ignore_mismatched_sizes=True,
use_auth_token=auth_token
)
## sentiment model
if 'classifier' not in globals():
sentiment_model = 'cardiffnlp/twitter-xlm-roberta-base-sentiment'
classifier = pipeline("sentiment-analysis", model=sentiment_model, tokenizer=sentiment_model, use_fast=False, top_k=3)
input_text = st.text_input(
label='Estimate item desirability:',
value='I love a good fight.',
placeholder='Enter item text'
)
if input_text:
classifier_output = classifier(input_text)
classifier_output_dict = {x['label']: x['score'] for x in classifier_output[0]}
classifier_score = classifier_output_dict['positive'] - classifier_output_dict['negative']
inputs = tokenizer(input_text, padding=True, return_tensors='pt')
with torch.no_grad():
score = model(**inputs).logits.squeeze().tolist()
z = z_score(score)
p1 = indicator_plot(
value=classifier_score,
title=f'Item Sentiment',
value_range=[-1, 1],
domain={'x': [.55, 1], 'y': [0, 1]}
)
p2 = indicator_plot(
value=z,
title=f'Item Desirability',
value_range=[-4, 4],
domain={'x': [0, .45], 'y': [0, 1]},
)
fig = go.Figure()
fig.add_trace(p1)
fig.add_trace(p2)
fig.update_layout(
title=dict(text=f'"{input_text}"', font=dict(size=36),yref='paper'),
paper_bgcolor = "white",
font = {'color': "black", 'family': "Arial"})
st.plotly_chart(fig, theme=None, use_container_width=True)
st.markdown("""
Item sentiment: Absolute differences between positive and negative sentiment.
Item desirability: z-transformed values, 0 indicated "neutral".
""")
## plot
st.markdown("""
## Explore the data
Figures show the accuarcy in precitions of human-rated item desirability by the sentiment model (left) and the desirability model (right), using `test`-partition data only.
""")
show_covariates = st.checkbox('Show covariates', value=True)
if show_covariates:
option = st.selectbox('Group by', options=list(covariate_columns.values()))
else:
option = None
plot = scatter_plot(df, option)
st.plotly_chart(plot, theme=None, use_container_width=True)