import os import torch import json import time import random import streamlit as st import firebase_admin import logging from firebase_admin import credentials, firestore from dotenv import load_dotenv from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import pipeline import plotly.graph_objects as go logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) load_dotenv() def load_credentials(): try: with open('public_creds.json') as f: credentials_dict = json.load(f) secret = { 'private_key_id': os.environ.get('private_key_id'), 'private_key': os.environ.get('private_key').replace(r'\n', '\n') } credentials_dict.update(secret) return credentials_dict except Exception as e: logging.error(f'Error while loading credentials: {e}') return None def connect_to_db(credentials_dict): try: cred = credentials.Certificate(credentials_dict) if not firebase_admin._apps: firebase_admin.initialize_app(cred) logging.info('Established connection to db!') return firestore.client() except Exception as e: logging.error(f'Error while connecting to db: {e}') return None def get_statements_from_db(db): try: document = db.collection('ItemDesirability').document('Items') statements = document.get().to_dict()['statements'] logging.info(f'Retrieved {len(statements)} statements from db!') return statements except Exception as e: logging.error(f'Error while retrieving items from db: {e}') return None def update_db(db, payload): try: collection_ref = db.collection('ItemDesirability') doc_ref = collection_ref.document('Responses') doc = doc_ref.get() if doc.exists: doc_ref.update({ 'Data': firestore.ArrayUnion([payload]) }) else: doc_ref.set({ 'Data': [payload] }) logging.info(f'Sent payload to db!') return True except Exception as e: logging.error(f'Error while sending payload to db: {e}') return False def pick_random(input_list): try: return random.choice(input_list) except Exception as e: logging.error(f'Error while picking random statement: {e}') return None def z_score(y, mean=.04853076, sd=.9409466): return (y - mean) / sd def score_text(input_text): classifier_output = st.session_state.classifier(input_text) classifier_output_dict = {x['label']: x['score'] for x in classifier_output[0]} sentiment = classifier_output_dict['positive'] - classifier_output_dict['negative'] inputs = st.session_state.tokenizer(text=input_text, padding=True, return_tensors='pt') with torch.no_grad(): score = st.session_state.model(**inputs).logits.squeeze().tolist() desirability = z_score(score) return sentiment, desirability def indicator_plot(value, title, value_range, domain): plot = go.Indicator( mode = "gauge+delta", value = value, domain = domain, title = title, delta = { 'reference': 0, 'decreasing': {'color': "#ec4899"}, 'increasing': {'color': "#36def1"} }, gauge = { 'axis': {'range': value_range, 'tickwidth': 1, 'tickcolor': "black"}, 'bar': {'color': "#4361ee"}, 'bgcolor': "white", 'borderwidth': 2, 'bordercolor': "#efefef", 'steps': [ {'range': [value_range[0], 0], 'color': '#efefef'}, {'range': [0, value_range[1]], 'color': '#efefef'} ], 'threshold': { 'line': {'color': "#4361ee", 'width': 8}, 'thickness': 0.75, 'value': value } } ) return plot def show_scores(sentiment, desirability, input_text): p1 = indicator_plot( value=sentiment, title=f'Item Sentiment', value_range=[-1, 1], domain={'x': [0, .45], 'y': [0, 1]}, ) p2 = indicator_plot( value=desirability, title=f'Item Desirability', value_range=[-4, 4], domain={'x': [.55, 1], 'y': [0, 1]} ) fig = go.Figure() fig.add_trace(p1) fig.add_trace(p2) fig.update_layout( title=dict(text=f'"{input_text}"', font=dict(size=36),yref='paper'), paper_bgcolor = "white", font = {'color': "black", 'family': "Arial"}) st.plotly_chart(fig, theme=None, use_container_width=True) st.markdown(""" Item sentiment: Absolute differences between positive and negative sentiment. Item desirability: z-transformed values, 0 indicated "neutral". """) def update_statement_placeholder(placeholder): placeholder.markdown( body=f""" Is it socially desirable or undesirable to endorse the following statement? ###
\"{st.session_state.current_statement.capitalize()}\"
""", unsafe_allow_html=True ) def show(): credentials_dict = load_credentials() connection_attempts = 0 if 'db' not in st.session_state: st.session_state.db = None while st.session_state.db is None and connection_attempts < 3: st.session_state.db = connect_to_db(credentials_dict) if st.session_state.db is None: logging.info('Retrying to connect to db...') connection_attempts += 1 time.sleep(1) retrieval_attempts = 0 if 'statements' not in st.session_state: st.session_state.statements = None if 'current_statement' not in st.session_state: st.session_state.current_statement = None while st.session_state.statements is None and retrieval_attempts < 3: st.session_state.statements = get_statements_from_db(st.session_state.db) st.session_state.current_statement = pick_random(st.session_state.statements) if st.session_state.statements is None: logging.info('Retrying to retrieve statements from db...') retrieval_attempts += 1 time.sleep(1) st.markdown(""" ## Try it yourself! Use the text field below to enter a statement that might be part of a psychological questionnaire (e.g., "I love a good fight."). The left dial indicates how socially desirable it might be to endorse this item. The right dial indicates sentiment (i.e., valence) as estimated by regular sentiment analysis (using the `cardiffnlp/twitter-xlm-roberta-base-sentiment` model). """) if st.session_state.db: collect_data = st.checkbox( label='I want to support and help improve this research.', value=True ) else: collect_data = False if st.session_state.db and collect_data: statement_placeholder = st.empty() update_statement_placeholder(statement_placeholder) rating_options = ['[Please select]', 'Very undesirable', 'Undesirable', 'Neutral', 'Desirable', 'Very desirable'] selected_rating = st.selectbox( label='Rate the statement above according to whether it is socially desirable or undesirable.', options=rating_options, index=0 ) suitability_options = ['No, I\'m just playing around', 'Yes, my input can help improve this research'] research_suitability = st.radio( label='Is your input suitable for research purposes?', options=suitability_options, horizontal=True ) with st.spinner('Loading the model might take a couple of seconds...'): st.markdown("### Estimate item desirability") if os.environ.get('item-desirability'): model_path = 'magnolia-psychometrics/item-desirability' else: model_path = os.getenv('model_path') auth_token = os.environ.get('item-desirability') or True if 'tokenizer' not in st.session_state: st.session_state.tokenizer = AutoTokenizer.from_pretrained( pretrained_model_name_or_path=model_path, use_fast=True, use_auth_token=auth_token ) if 'model' not in st.session_state: st.session_state.model = AutoModelForSequenceClassification.from_pretrained( pretrained_model_name_or_path=model_path, num_labels=1, ignore_mismatched_sizes=True, use_auth_token=auth_token ) ## sentiment model if 'classifier' not in st.session_state: st.session_state.sentiment_model = 'cardiffnlp/twitter-xlm-roberta-base-sentiment' st.session_state.classifier = pipeline( task='sentiment-analysis', model=st.session_state.sentiment_model, tokenizer=st.session_state.sentiment_model, use_fast=False, top_k=3 ) input_text = st.text_input( label='Item text/statement:', value='I love a good fight.', placeholder='Enter item text' ) if st.button(label='Evaluate Item Text', type="primary"): if collect_data and st.session_state.db: if selected_rating != rating_options[0]: item_rating = rating_options.index(selected_rating) suitability_rating = suitability_options.index(research_suitability) sentiment, desirability = score_text(input_text) payload = { 'user_id': st.session_state.user_id, 'statement': st.session_state.current_statement, 'rating': item_rating, 'suitability': suitability_rating, 'input_text': input_text, 'sentiment': sentiment, 'desirability': desirability, } update_success = update_db( db=st.session_state.db, payload=payload ) if update_success: st.session_state.current_statement = pick_random(st.session_state.statements) update_statement_placeholder(statement_placeholder) show_scores(sentiment, desirability, input_text) else: st.error('Please rate the statement presented above!') else: sentiment, desirability = score_text(input_text) show_scores(sentiment, desirability, input_text)