Mahimai Raja J commited on
Commit
f747692
Β·
1 Parent(s): 0a60ba3

Initial Release

Browse files
Files changed (5) hide show
  1. .gitignore +11 -0
  2. app.py +84 -0
  3. model.pth +3 -0
  4. modules.py +48 -0
  5. requirements.txt +2 -0
.gitignore ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Virtualenv
2
+ env
3
+
4
+ # Cache
5
+ __pycache__
6
+
7
+ # Mac OS X
8
+ .DS_Store
9
+
10
+ # file upload
11
+ data
app.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import os
4
+ import cv2
5
+ from modules import *
6
+
7
+
8
+ def processImage():
9
+ """
10
+ UI Part if the users chooses
11
+ to proceess a image.
12
+ """
13
+ # load the model
14
+ model = setup()
15
+ # load the image
16
+ image_file = st.file_uploader("Upload An Image",type=['png','jpeg','jpg'])
17
+ # check if the image is uploaded
18
+ if image_file is not None:
19
+ # get the file details
20
+ file_details = {"FileName":image_file.name,"FileType":image_file.type}
21
+ file_type = (image_file.type).split('/')[1]
22
+ # make a directory to store the image
23
+ if not os.path.exists(os.path.join(os.getcwd(),"data")):
24
+ os.makedirs(os.path.join(os.getcwd(),"data"))
25
+ # save the image
26
+ input_file_name = f"data/Input.{file_type}"
27
+ with open(input_file_name,mode = "wb") as f:
28
+ f.write(image_file.getbuffer())
29
+ # predict the image and save it
30
+ result_frame, labels = predict(input_file_name,model)
31
+ cv2.imwrite('data/result.jpg', result_frame)
32
+ # display the image and class
33
+ img_ = Image.open(f"data/result.jpg")
34
+ result_class = list(labels).split(" ")[0]
35
+ confidence = float(list(labels).split(" ")[1])
36
+
37
+ st.subheader(f"Result {result_class} with confidence {confidence * 100 :.2f}%")
38
+ st.image(img_)
39
+ # To download the image
40
+ with open("data/result.jpg", "rb") as file:
41
+ st.download_button(
42
+ label="Download image",
43
+ data=file,
44
+ file_name="predicted.jpg",
45
+ mime="image/jpg"
46
+ )
47
+
48
+
49
+ def main():
50
+ """
51
+ UI Part of the entire application.
52
+ """
53
+ st.set_page_config(
54
+ page_title ="Parkinson-X",
55
+ page_icon = "🧊",
56
+ menu_items={
57
+ 'About': "# Parkinson's Prediction"
58
+ }
59
+ )
60
+ st.markdown("<h1 style='text-align: center;'>Parkinson's <span style='color: #9eeade;'>Prediction</span></h1>", unsafe_allow_html=True)
61
+ st.subheader("Early Parkinson's detection")
62
+
63
+ st.title('Drawing Analysis')
64
+
65
+ processImage()
66
+ with st.expander("Parkinson's Prediction"):
67
+ st.markdown( "<p style='font-size: 30px;'><strong>Welcome to the Parkinson's \
68
+ <span style='color: #9eeade;'>Prediction</span> App!</strong></p>", unsafe_allow_html= True)
69
+ st.markdown("<p style = 'font-size : 20px; color : white;'>This application was \
70
+ built to analyse the <strong>spiral drawings</strong> \
71
+ to predict and suggest parkinson diagnosis.</p>", unsafe_allow_html=True)
72
+
73
+ if __name__ == '__main__':
74
+ __author__ = 'Mahimai Raja J'
75
+ __version__ = "1.0.0"
76
+ main()
77
+
78
+ # πŸ“Œ NOTE :
79
+ # Do not modify the credits unless you have
80
+ # legal permission from the authorizing authority .
81
+
82
+ # Thank you for helping to maintain the integrity of the
83
+ # open source community by promoting fair and ethical
84
+ # use of open source software πŸ’Ž.
model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05894076416648b190ae699ae5de8142dfe4bb0b634bfdb8fa08dcb58b2fd6ab
3
+ size 892867872
modules.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from super_gradients.training import models
2
+ import supervision as sv
3
+ import torch
4
+ import cv2
5
+
6
+ # install the required packages
7
+ # pip install -q super-gradients==3.1.1 supervision
8
+
9
+ # predict function to predict the image
10
+ def predict(img, model):
11
+ SOURCE_IMAGE_PATH = img
12
+ image = cv2.imread(SOURCE_IMAGE_PATH)
13
+ result = list(model.predict(image, conf=0.70))[0]
14
+ detections = sv.Detections(
15
+ xyxy=result.prediction.bboxes_xyxy,
16
+ confidence=result.prediction.confidence,
17
+ class_id=result.prediction.labels.astype(int)
18
+ )
19
+ # Create a box annotator
20
+ box_annotator = sv.BoxAnnotator()
21
+ # Get the labels
22
+ labels = [
23
+ f"{result.class_names[class_id]} {confidence:0.2f}"
24
+ for _, _, confidence, class_id, _
25
+ in detections
26
+ ]
27
+ # Annotate the image
28
+ annotated_frame = box_annotator.annotate(
29
+ scene=image.copy(),
30
+ detections=detections,
31
+ labels=labels
32
+ )
33
+
34
+ # sv.plot_image(annotated_frame, (12, 12))
35
+ return annotated_frame, labels
36
+
37
+
38
+ def setup():
39
+ DEVICE = 'cuda' if torch.cuda.is_available() else "cpu" # 'cpu' or 'cuda'
40
+ MODEL_ARCH = 'yolo_nas_l'
41
+
42
+ # Load the model
43
+ model = models.get(
44
+ MODEL_ARCH,
45
+ num_classes=2,
46
+ checkpoint_path="model.pth"
47
+ ).to(DEVICE)
48
+ return model
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ super-gradients==3.1.1
2
+ supervision==0.8.0