|
import streamlit as st |
|
|
|
st.set_page_config(layout="wide") |
|
|
|
with st.sidebar: |
|
st.title('Document Summarization and QA System') |
|
st.markdown(''' |
|
## About this application |
|
Upload a pdf to ask questions about it. This retrieval-augmented generation (RAG) workflow uses: |
|
- [Streamlit](https://streamlit.io/) |
|
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/) |
|
- [OpenAI](https://platform.openai.com/docs/models) |
|
''') |
|
|
|
st.write('Made by ***Nate Mahynski***') |
|
st.write('nathan.mahynski@nist.gov') |
|
|
|
|
|
provider = st.selectbox( |
|
label="Select LLM Provider", |
|
options=['openai', 'huggingface'], |
|
index=0 |
|
) |
|
|
|
|
|
if provider == 'openai': |
|
llm_list = ['gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'gpt-4o'] |
|
else: |
|
llm_list = [] |
|
|
|
llm = st.selectbox( |
|
label="Select LLM Model", |
|
options=llm_list, |
|
index=0 |
|
) |
|
|
|
|
|
token = st.text_input( |
|
"Enter your token", |
|
value=None |
|
) |