|
import streamlit as st |
|
|
|
from streamlit_pdf_viewer import pdf_viewer |
|
|
|
st.set_page_config(layout="wide") |
|
|
|
with st.sidebar: |
|
st.title('Document Summarization and QA System') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
provider = st.selectbox( |
|
label="Select LLM Provider", |
|
options=['openai', 'huggingface'], |
|
index=0 |
|
) |
|
|
|
|
|
if provider == 'openai': |
|
llm_list = ['gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'gpt-4o'] |
|
else: |
|
llm_list = [] |
|
|
|
llm = st.selectbox( |
|
label="Select LLM Model", |
|
options=llm_list, |
|
index=0 |
|
) |
|
|
|
|
|
temperature = st.slider( |
|
"Temperature", |
|
min_value=0.0, |
|
max_value=1.0, |
|
value=0.0, |
|
step=0.05, |
|
) |
|
|
|
|
|
token = st.text_input( |
|
"Enter your token", |
|
value=None |
|
) |
|
|
|
uploaded_file = st.file_uploader( |
|
"Choose a PDF file to upload", |
|
type=['pdf'], |
|
accept_multiple_files=False |
|
) |
|
|
|
if uploaded_file is not None: |
|
|
|
pass |
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
st.write('testing', uploaded_file) |
|
|
|
with col2: |
|
if uploaded_file is not None: |
|
|
|
bytes_data = uploaded_file.getvalue() |
|
pdf_viewer(input=bytes_data, width=700) |