RAG / app.py
mahynski's picture
Added reqs and tried it out
7a9e2a5
raw
history blame
1.67 kB
import streamlit as st
from streamlit_pdf_viewer import pdf_viewer
st.set_page_config(layout="wide")
def main():
with st.sidebar:
st.title('Document Summarization and QA System')
# st.markdown('''
# ## About this application
# Upload a pdf to ask questions about it. This retrieval-augmented generation (RAG) workflow uses:
# - [Streamlit](https://streamlit.io/)
# - [LlamaIndex](https://docs.llamaindex.ai/en/stable/)
# - [OpenAI](https://platform.openai.com/docs/models)
# ''')
# st.write('Made by ***Nate Mahynski***')
# st.write('nathan.mahynski@nist.gov')
# Select Provider
provider = st.selectbox(
label="Select LLM Provider",
options=['openai', 'huggingface'],
index=0
)
# Select LLM
if provider == 'openai':
llm_list = ['gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'gpt-4o']
else:
llm_list = []
llm = st.selectbox(
label="Select LLM Model",
options=llm_list,
index=0
)
# Enter Token
token = st.text_input(
"Enter your token",
value=None
)
uploaded_file = st.file_uploader(
"Choose a PDF file to upload",
type=['pdf'],
accept_multiple_files=False
)
if uploaded_file is not None:
# Parse the file
pass
col1, col2 = st.columns(2)
with col2:
if uploaded_file is not None:
# Display the pdf
pdf_viewer(input=uploaded_file, width=700)