Update app.py
Browse files
app.py
CHANGED
@@ -59,191 +59,199 @@ class GeminiTokens:
|
|
59 |
def main():
|
60 |
with st.sidebar:
|
61 |
st.title('Document Summarization and QA System')
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
# Select LLM
|
71 |
-
if provider == 'google':
|
72 |
-
llm_list = ['gemini-1.0-pro', 'gemini-1.5-flash', 'gemini-1.5-pro']
|
73 |
-
elif provider == 'huggingface':
|
74 |
-
llm_list = []
|
75 |
-
elif provider == 'mistralai':
|
76 |
-
llm_list = ["mistral-large-latest", "open-mistral-nemo-latest"]
|
77 |
-
elif provider == 'openai':
|
78 |
-
llm_list = ['gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'gpt-4o', 'gpt-4o-mini']
|
79 |
-
else:
|
80 |
-
llm_list = []
|
81 |
-
|
82 |
-
if provider == 'huggingface':
|
83 |
-
llm_name = st.text_input(
|
84 |
-
"Enter LLM namespace/model-name",
|
85 |
-
value="HuggingFaceH4/zephyr-7b-alpha",
|
86 |
-
)
|
87 |
-
|
88 |
-
# Also give the user the option for different embedding models, too
|
89 |
-
embed_name = st.text_input(
|
90 |
-
label="Enter embedding namespace/model-name",
|
91 |
-
value="BAAI/bge-small-en-v1.5",
|
92 |
-
)
|
93 |
-
else:
|
94 |
-
llm_name = st.selectbox(
|
95 |
-
label="Select LLM Model",
|
96 |
-
options=llm_list,
|
97 |
-
index=0
|
98 |
)
|
99 |
-
|
100 |
-
|
101 |
-
temperature = st.slider(
|
102 |
-
"Temperature",
|
103 |
-
min_value=0.0,
|
104 |
-
max_value=1.0,
|
105 |
-
value=0.0,
|
106 |
-
step=0.05,
|
107 |
-
)
|
108 |
-
|
109 |
-
# Enter Parsing API Key
|
110 |
-
parse_key = st.text_input(
|
111 |
-
"Enter your LlamaParse API Key",
|
112 |
-
value=None
|
113 |
-
)
|
114 |
-
|
115 |
-
# Enter LLM API Key
|
116 |
-
llm_key = st.text_input(
|
117 |
-
"Enter your LLM provider API Key",
|
118 |
-
value=None,
|
119 |
-
)
|
120 |
-
|
121 |
-
# Create LLM
|
122 |
-
# Global tokenization needs to be consistent with LLM for token counting
|
123 |
-
# https://docs.llamaindex.ai/en/stable/module_guides/models/llms/
|
124 |
-
if llm_key is not None:
|
125 |
if provider == 'google':
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
)
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
141 |
)
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
from transformers import AutoTokenizer
|
152 |
-
|
153 |
-
max_output_tokens = 2048 # Just a generic value
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
temperature=temperature,
|
160 |
max_tokens=max_output_tokens
|
161 |
)
|
162 |
-
Settings.tokenizer =
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
)
|
|
|
166 |
Settings.num_output = max_output_tokens
|
167 |
-
Settings.embed_model =
|
168 |
-
model_name=
|
|
|
169 |
)
|
170 |
-
Settings.context_window =
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
context_window =
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
)
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
)
|
230 |
-
|
231 |
-
parsed_document = None
|
232 |
-
if uploaded_file is not None:
|
233 |
-
# Parse the file
|
234 |
-
parser = LlamaParse(
|
235 |
-
api_key=parse_key, # Can also be set in your env as LLAMA_CLOUD_API_KEY
|
236 |
-
result_type="text" # "markdown" and "text" are available
|
237 |
)
|
238 |
|
239 |
-
# Create a temporary directory to save the file then load and parse it
|
240 |
-
temp_dir = tempfile.TemporaryDirectory()
|
241 |
-
temp_filename = os.path.join(temp_dir.name, uploaded_file.name)
|
242 |
-
with open(temp_filename, "wb") as f:
|
243 |
-
f.write(uploaded_file.getvalue())
|
244 |
-
parsed_document = parser.load_data(temp_filename)
|
245 |
-
temp_dir.cleanup()
|
246 |
-
|
247 |
col1, col2 = st.columns(2)
|
248 |
|
249 |
with col2:
|
@@ -281,9 +289,15 @@ def main():
|
|
281 |
|
282 |
run = st.button("Answer", type="primary")
|
283 |
|
284 |
-
if parsed_document is not None and run:
|
285 |
index = VectorStoreIndex.from_documents(parsed_document)
|
286 |
-
query_engine = index.as_query_engine(
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
response = query_engine.query(prompt)
|
288 |
st.write(response.response)
|
289 |
|
|
|
59 |
def main():
|
60 |
with st.sidebar:
|
61 |
st.title('Document Summarization and QA System')
|
62 |
+
|
63 |
+
with st.form(key="model_settings"):
|
64 |
+
# Select Provider
|
65 |
+
provider = st.selectbox(
|
66 |
+
label="Select LLM Provider",
|
67 |
+
options=['google', 'huggingface', 'mistralai', 'openai'],
|
68 |
+
index=3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
)
|
70 |
+
|
71 |
+
# Select LLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
if provider == 'google':
|
73 |
+
llm_list = ['gemini-1.0-pro', 'gemini-1.5-flash', 'gemini-1.5-pro']
|
74 |
+
elif provider == 'huggingface':
|
75 |
+
llm_list = []
|
76 |
+
elif provider == 'mistralai':
|
77 |
+
llm_list = ["mistral-large-latest", "open-mistral-nemo-latest"]
|
78 |
+
elif provider == 'openai':
|
79 |
+
llm_list = ['gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'gpt-4o', 'gpt-4o-mini']
|
80 |
+
else:
|
81 |
+
llm_list = []
|
82 |
+
|
83 |
+
if provider == 'huggingface':
|
84 |
+
llm_name = st.text_input(
|
85 |
+
"Enter LLM namespace/model-name",
|
86 |
+
value="HuggingFaceH4/zephyr-7b-alpha",
|
87 |
+
)
|
88 |
+
|
89 |
+
# Also give the user the option for different embedding models, too
|
90 |
+
embed_name = st.text_input(
|
91 |
+
label="Enter embedding namespace/model-name",
|
92 |
+
value="BAAI/bge-small-en-v1.5",
|
93 |
)
|
94 |
+
else:
|
95 |
+
llm_name = st.selectbox(
|
96 |
+
label="Select LLM Model",
|
97 |
+
options=llm_list,
|
98 |
+
index=0
|
99 |
)
|
100 |
+
|
101 |
+
# Temperature
|
102 |
+
temperature = st.slider(
|
103 |
+
"Temperature",
|
104 |
+
min_value=0.0,
|
105 |
+
max_value=1.0,
|
106 |
+
value=0.0,
|
107 |
+
step=0.05,
|
108 |
+
)
|
|
|
|
|
|
|
109 |
|
110 |
+
similarity_top_k = st.number_input("Top k nodes to retrieve (similarity_top_k)", min_value=1, max_value=100, value=5, step=1)
|
111 |
+
similarity_cutoff = st.slider("Select node similarity cutoff", min_value=0.0, max_value=1.0, value=0.7)
|
112 |
+
|
113 |
+
# Enter Parsing API Key
|
114 |
+
parse_key = st.text_input(
|
115 |
+
"Enter your LlamaParse API Key",
|
116 |
+
value=None
|
117 |
+
)
|
118 |
+
|
119 |
+
# Enter LLM API Key
|
120 |
+
llm_key = st.text_input(
|
121 |
+
"Enter your LLM provider API Key",
|
122 |
+
value=None,
|
123 |
+
)
|
124 |
+
|
125 |
+
# Create LLM
|
126 |
+
# Global tokenization needs to be consistent with LLM for token counting
|
127 |
+
# https://docs.llamaindex.ai/en/stable/module_guides/models/llms/
|
128 |
+
if llm_key is not None:
|
129 |
+
if provider == 'google':
|
130 |
+
from llama_index.llms.gemini import Gemini
|
131 |
+
from llama_index.embeddings.gemini import GeminiEmbedding
|
132 |
+
max_output_tokens = 8192 # https://firebase.google.com/docs/vertex-ai/gemini-models
|
133 |
+
|
134 |
+
os.environ['GOOGLE_API_KEY'] = str(llm_key)
|
135 |
+
Settings.llm = Gemini(
|
136 |
+
model=f"models/{llm_name}",
|
137 |
+
token=os.environ.get("GOOGLE_API_KEY"),
|
138 |
temperature=temperature,
|
139 |
max_tokens=max_output_tokens
|
140 |
)
|
141 |
+
Settings.tokenizer = GeminiTokens(llm_name)
|
142 |
+
Settings.num_output = max_output_tokens
|
143 |
+
Settings.embed_model = GeminiEmbedding(
|
144 |
+
model_name="models/text-embedding-004", api_key=os.environ.get("GOOGLE_API_KEY") #, title="this is a document"
|
145 |
+
)
|
146 |
+
if llm_name == 'gemini-1.0-pro':
|
147 |
+
total_token_limit = 32760
|
148 |
+
else:
|
149 |
+
total_token_limit = 1e6
|
150 |
+
Settings.context_window = total_token_limit - max_output_tokens # Gemini counts total tokens
|
151 |
+
elif provider == 'huggingface':
|
152 |
+
if llm_name is not None and embed_name is not None:
|
153 |
+
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
154 |
+
from llama_index.embeddings.huggingface import HuggingFaceInferenceAPIEmbedding
|
155 |
+
from transformers import AutoTokenizer
|
156 |
+
|
157 |
+
max_output_tokens = 2048 # Just a generic value
|
158 |
+
|
159 |
+
os.environ['HF_TOKEN'] = str(llm_key)
|
160 |
+
Settings.llm = HuggingFaceInferenceAPI(
|
161 |
+
model_name=llm_name,
|
162 |
+
token=os.environ.get("HF_TOKEN"),
|
163 |
+
temperature=temperature,
|
164 |
+
max_tokens=max_output_tokens
|
165 |
+
)
|
166 |
+
Settings.tokenizer = AutoTokenizer.from_pretrained(
|
167 |
+
llm_name,
|
168 |
+
token=os.environ.get("HF_TOKEN"),
|
169 |
+
)
|
170 |
+
Settings.num_output = max_output_tokens
|
171 |
+
Settings.embed_model = HuggingFaceInferenceAPIEmbedding(
|
172 |
+
model_name=embed_name
|
173 |
+
)
|
174 |
+
Settings.context_window = 4096 # Just a generic value
|
175 |
+
elif provider == 'mistralai':
|
176 |
+
from llama_index.llms.mistralai import MistralAI
|
177 |
+
from llama_index.embeddings.mistralai import MistralAIEmbedding
|
178 |
+
max_output_tokens = 8192 # Based on internet consensus since this is not well documented
|
179 |
+
|
180 |
+
os.environ['MISTRAL_API_KEY'] = str(llm_key)
|
181 |
+
Settings.llm = MistralAI(
|
182 |
+
model=llm_name,
|
183 |
+
temperature=temperature,
|
184 |
+
max_tokens=max_output_tokens,
|
185 |
+
random_seed=42,
|
186 |
+
safe_mode=True
|
187 |
)
|
188 |
+
Settings.tokenizer = MistralTokens(llm_name)
|
189 |
Settings.num_output = max_output_tokens
|
190 |
+
Settings.embed_model = MistralAIEmbedding(
|
191 |
+
model_name="mistral-embed",
|
192 |
+
api_key=os.environ.get("MISTRAL_API_KEY")
|
193 |
)
|
194 |
+
Settings.context_window = 128000 # 128k for flagship models - doesn't seem to count input tokens
|
195 |
+
elif provider == 'openai':
|
196 |
+
from llama_index.llms.openai import OpenAI
|
197 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
198 |
+
|
199 |
+
# https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
|
200 |
+
if llm_name == 'gpt-3.5-turbo':
|
201 |
+
max_output_tokens = 4096
|
202 |
+
context_window = 16385
|
203 |
+
elif llm_name == 'gpt-4':
|
204 |
+
max_output_tokens = 8192
|
205 |
+
context_window = 8192
|
206 |
+
elif llm_name == 'gpt-4-turbo':
|
207 |
+
max_output_tokens = 4096
|
208 |
+
context_window = 128000
|
209 |
+
elif llm_name == 'gpt-4o':
|
210 |
+
max_output_tokens = 4096
|
211 |
+
context_window = 128000
|
212 |
+
elif llm_name == 'gpt-4o-mini':
|
213 |
+
max_output_tokens = 16384
|
214 |
+
context_window = 128000
|
215 |
+
|
216 |
+
os.environ["OPENAI_API_KEY"] = str(llm_key)
|
217 |
+
Settings.llm = OpenAI(
|
218 |
+
model=llm_name,
|
219 |
+
temperature=temperature,
|
220 |
+
max_tokens=max_output_tokens
|
221 |
+
)
|
222 |
+
Settings.tokenizer = tiktoken.encoding_for_model(llm_name).encode
|
223 |
+
Settings.num_output = max_output_tokens
|
224 |
+
Settings.embed_model = OpenAIEmbedding()
|
225 |
+
Settings.context_window = context_window
|
226 |
+
else:
|
227 |
+
raise NotImplementedError(f"{provider} is not supported yet")
|
228 |
+
|
229 |
+
uploaded_file = st.file_uploader(
|
230 |
+
"Choose a PDF file to upload",
|
231 |
+
type=['pdf'],
|
232 |
+
accept_multiple_files=False
|
233 |
+
)
|
234 |
+
|
235 |
+
parsed_document = None
|
236 |
+
if uploaded_file is not None:
|
237 |
+
# Parse the file
|
238 |
+
parser = LlamaParse(
|
239 |
+
api_key=parse_key, # Can also be set in your env as LLAMA_CLOUD_API_KEY
|
240 |
+
result_type="text" # "markdown" and "text" are available
|
241 |
)
|
242 |
+
|
243 |
+
# Create a temporary directory to save the file then load and parse it
|
244 |
+
temp_dir = tempfile.TemporaryDirectory()
|
245 |
+
temp_filename = os.path.join(temp_dir.name, uploaded_file.name)
|
246 |
+
with open(temp_filename, "wb") as f:
|
247 |
+
f.write(uploaded_file.getvalue())
|
248 |
+
parsed_document = parser.load_data(temp_filename)
|
249 |
+
temp_dir.cleanup()
|
250 |
+
|
251 |
+
submit_button = st.form_submit_button(
|
252 |
+
"Construct RAG"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
)
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
col1, col2 = st.columns(2)
|
256 |
|
257 |
with col2:
|
|
|
289 |
|
290 |
run = st.button("Answer", type="primary")
|
291 |
|
292 |
+
if parsed_document is not None and run and submit_button:
|
293 |
index = VectorStoreIndex.from_documents(parsed_document)
|
294 |
+
query_engine = index.as_query_engine(
|
295 |
+
similarity_top_k=similarity_top_k,
|
296 |
+
similarity_cutoff=similarity_cutoff,
|
297 |
+
response_mode='compact',
|
298 |
+
# text_qa_template=text_qa_template,
|
299 |
+
# refine_template=refine_template,
|
300 |
+
)
|
301 |
response = query_engine.query(prompt)
|
302 |
st.write(response.response)
|
303 |
|