add gemini token counter
Browse files
app.py
CHANGED
@@ -14,6 +14,24 @@ from streamlit_pdf_viewer import pdf_viewer
|
|
14 |
|
15 |
MAX_OUTPUT_TOKENS = 2048
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def main():
|
18 |
with st.sidebar:
|
19 |
st.title('Document Summarization and QA System')
|
@@ -84,7 +102,6 @@ def main():
|
|
84 |
# raise NotImplementedError(f"{provider} is not supported yet")
|
85 |
from llama_index.llms.gemini import Gemini
|
86 |
from llama_index.embeddings.gemini import GeminiEmbedding
|
87 |
-
from vertexai.preview import tokenization
|
88 |
|
89 |
os.environ['GOOGLE_API_KEY'] = str(llm_key)
|
90 |
Settings.llm = Gemini(
|
@@ -93,7 +110,7 @@ def main():
|
|
93 |
temperature=temperature,
|
94 |
max_tokens=MAX_OUTPUT_TOKENS
|
95 |
)
|
96 |
-
Settings.tokenizer = tokenization.get_tokenizer_for_model(llm_name).compute_tokens
|
97 |
Settings.num_output = MAX_OUTPUT_TOKENS
|
98 |
Settings.embed_model = GeminiEmbedding(
|
99 |
model_name="models/text-embedding-004", api_key=os.environ.get("GOOGLE_API_KEY") #, title="this is a document"
|
|
|
14 |
|
15 |
MAX_OUTPUT_TOKENS = 2048
|
16 |
|
17 |
+
|
18 |
+
class CountGeminiTokens:
|
19 |
+
"""
|
20 |
+
Count tokens in Gemini models.
|
21 |
+
|
22 |
+
See: https://medium.com/google-cloud/counting-gemini-text-tokens-locally-with-the-vertex-ai-sdk-78979fea6244
|
23 |
+
"""
|
24 |
+
def __init__(self, llm_name):
|
25 |
+
from vertexai.preview import tokenization
|
26 |
+
self.tokenizer = tokenization.get_tokenizer_for_model(llm_name)
|
27 |
+
|
28 |
+
def __call__(self, input):
|
29 |
+
"""This returns all the tokens in a list since LlamaIndex seems to count by calling `len()` on the tokenizer function."""
|
30 |
+
tokens = []
|
31 |
+
for list in self.tokenizer.compute_tokens(input).token_info_list:
|
32 |
+
tokens += list.tokens
|
33 |
+
return tokens
|
34 |
+
|
35 |
def main():
|
36 |
with st.sidebar:
|
37 |
st.title('Document Summarization and QA System')
|
|
|
102 |
# raise NotImplementedError(f"{provider} is not supported yet")
|
103 |
from llama_index.llms.gemini import Gemini
|
104 |
from llama_index.embeddings.gemini import GeminiEmbedding
|
|
|
105 |
|
106 |
os.environ['GOOGLE_API_KEY'] = str(llm_key)
|
107 |
Settings.llm = Gemini(
|
|
|
110 |
temperature=temperature,
|
111 |
max_tokens=MAX_OUTPUT_TOKENS
|
112 |
)
|
113 |
+
Settings.tokenizer = CountGeminiTokens(llm_name) #tokenization.get_tokenizer_for_model(llm_name).compute_tokens
|
114 |
Settings.num_output = MAX_OUTPUT_TOKENS
|
115 |
Settings.embed_model = GeminiEmbedding(
|
116 |
model_name="models/text-embedding-004", api_key=os.environ.get("GOOGLE_API_KEY") #, title="this is a document"
|