import tempfile import os import streamlit as st from llama_index.llms.gemini import Gemini from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.llms.mistralai import MistralAI from llama_index.llms.openai import OpenAI from llama_index.core import ( VectorStoreIndex, Settings, ) from llama_parse import LlamaParse from streamlit_pdf_viewer import pdf_viewer # Global configurations from llama_index.core import set_global_handler set_global_handler("langfuse") st.set_page_config(layout="wide") with st.sidebar: st.title('Document Summarization and QA System') # st.markdown(''' # ## About this application # Upload a pdf to ask questions about it. This retrieval-augmented generation (RAG) workflow uses: # - [Streamlit](https://streamlit.io/) # - [LlamaIndex](https://docs.llamaindex.ai/en/stable/) # - [OpenAI](https://platform.openai.com/docs/models) # ''') # st.write('Made by ***Nate Mahynski***') # st.write('nathan.mahynski@nist.gov') # Select Provider provider = st.selectbox( label="Select LLM Provider", options=['google', 'huggingface', 'mistralai', 'openai'], index=0 ) # Select LLM if provider == 'google': llm_list = ['gemini'] elif provider == 'huggingface': llm_list = [] elif provider == 'mistralai': llm_list =[] elif provider == 'openai': llm_list = ['gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'gpt-4o', 'gpt-4o-mini'] else: llm_list = [] llm_name = st.selectbox( label="Select LLM Model", options=llm_list, index=0 ) # Temperature temperature = st.slider( "Temperature", min_value=0.0, max_value=1.0, value=0.0, step=0.05, ) max_output_tokens = 4096 # Create LLM if provider == 'openai': llm = OpenAI( model=llm_name, temperature=temperature, max_tokens=max_tokens ) # Global tokenization needs to be consistent with LLM # https://docs.llamaindex.ai/en/stable/module_guides/models/llms/ Settings.tokenizer = tiktoken.encoding_for_model(llm_name).encode Settings.num_output = max_tokens Settings.context_window = 4096 # max possible # Enter LLM Token llm_token = st.text_input( "Enter your LLM token", value=None ) if provider == 'openai': os.environ['OPENAI_API_KEY'] = llm_token elif provider == 'huggingface': os.environ['HFTOKEN'] = llm_token # Enter parsing Token parse_token = st.text_input( "Enter your LlamaParse token", value=None ) uploaded_file = st.file_uploader( "Choose a PDF file to upload", # type=['pdf'], accept_multiple_files=False ) parsed_document = None if uploaded_file is not None: # Parse the file parser = LlamaParse( api_key=parse_token, # can also be set in your env as LLAMA_CLOUD_API_KEY result_type="text" # "markdown" and "text" are available ) # Create a temporary directory to save the file then load and parse it temp_dir = tempfile.TemporaryDirectory() temp_filename = os.path.join(temp_dir.name, uploaded_file.name) with open(temp_filename, "wb") as f: f.write(uploaded_file.getvalue()) parsed_document = parser.load_data(temp_filename) temp_dir.cleanup() col1, col2 = st.columns(2) with col1: st.markdown( """ # Instructions 1. Obtain a [token](https://cloud.llamaindex.ai/api-key) (or API Key) from LlamaParse to parse your document. 2. Obtain a similar token from your preferred LLM provider. 3. Make selections at the left and upload a document to use a context. 4. Begin asking questions below! """ ) st.divider() index = VectorStoreIndex.from_documents(parsed_document) query_engine = index.as_query_engine() prompt_txt = 'Summarize this document in a 3-5 sentences.' prompt = st.text_area( label="Enter you query.", key="prompt_widget", value=prompt_txt ) response = qa_engine.query(prompt) st.write(response.response) with col2: tab1, tab2 = st.tabs(["Uploaded File", "Parsed File",]) with tab1: # st.header('This is the raw file you uploaded.') if uploaded_file is not None: # Display the pdf bytes_data = uploaded_file.getvalue() pdf_viewer(input=bytes_data, width=700) with tab2: # st.header('This is the parsed version of the file.') if parsed_document is not None: # Showed the raw parsing result st.write(parsed_document)