import streamlit as st from llama_index.llms.gemini import Gemini from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.llms.mistralai import MistralAI from llama_index.llms.openai import OpenAI from llama_index.core import ( VectorStoreIndex, Settings, ) from streamlit_pdf_viewer import pdf_viewer # Global configurations from llama_index.core import set_global_handler set_global_handler("langfuse") st.set_page_config(layout="wide") with st.sidebar: st.title('Document Summarization and QA System') # st.markdown(''' # ## About this application # Upload a pdf to ask questions about it. This retrieval-augmented generation (RAG) workflow uses: # - [Streamlit](https://streamlit.io/) # - [LlamaIndex](https://docs.llamaindex.ai/en/stable/) # - [OpenAI](https://platform.openai.com/docs/models) # ''') # st.write('Made by ***Nate Mahynski***') # st.write('nathan.mahynski@nist.gov') # Select Provider provider = st.selectbox( label="Select LLM Provider", options=['google', 'huggingface', 'mistralai', 'openai'], index=0 ) # Select LLM if provider == 'google': llm_list = ['gemini'] elif provider == 'huggingface': llm_list = [] elif provider == 'mistralai': llm_list =[] elif provider == 'openai': llm_list = ['gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'gpt-4o'] else: llm_list = [] llm_name = st.selectbox( label="Select LLM Model", options=llm_list, index=0 ) # Temperature temperature = st.slider( "Temperature", min_value=0.0, max_value=1.0, value=0.0, step=0.05, ) max_output_tokens = 4096 # Create LLM if provider == 'openai': llm = OpenAI( model=llm_name, temperature=temperature, max_tokens=max_tokens ) # Global tokenization needs to be consistent with LLM # https://docs.llamaindex.ai/en/stable/module_guides/models/llms/ Settings.tokenizer = tiktoken.encoding_for_model(llm_name).encode Settings.num_output = max_tokens Settings.context_window = 4096 # max possible # Enter Token token = st.text_input( "Enter your token", value=None ) uploaded_file = st.file_uploader( "Choose a PDF file to upload", type=['pdf'], accept_multiple_files=False ) if uploaded_file is not None: # Parse the file pass col1, col2 = st.columns(2) with col1: pass with col2: if uploaded_file is not None: # Display the pdf bytes_data = uploaded_file.getvalue() pdf_viewer(input=bytes_data, width=700)