Spaces:
Runtime error
Runtime error
from torch import nn | |
import torch.nn.functional as F | |
import torch | |
from modules.util import Hourglass, AntiAliasInterpolation2d, make_coordinate_grid, kp2gaussian | |
from modules.util import to_homogeneous, from_homogeneous, UpBlock2d, TPS | |
import math | |
class DenseMotionNetwork(nn.Module): | |
""" | |
Module that estimating an optical flow and multi-resolution occlusion masks | |
from K TPS transformations and an affine transformation. | |
""" | |
def __init__(self, block_expansion, num_blocks, max_features, num_tps, num_channels, | |
scale_factor=0.25, bg = False, multi_mask = True, kp_variance=0.01): | |
super(DenseMotionNetwork, self).__init__() | |
if scale_factor != 1: | |
self.down = AntiAliasInterpolation2d(num_channels, scale_factor) | |
self.scale_factor = scale_factor | |
self.multi_mask = multi_mask | |
self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_channels * (num_tps+1) + num_tps*5+1), | |
max_features=max_features, num_blocks=num_blocks) | |
hourglass_output_size = self.hourglass.out_channels | |
self.maps = nn.Conv2d(hourglass_output_size[-1], num_tps + 1, kernel_size=(7, 7), padding=(3, 3)) | |
if multi_mask: | |
up = [] | |
self.up_nums = int(math.log(1/scale_factor, 2)) | |
self.occlusion_num = 4 | |
channel = [hourglass_output_size[-1]//(2**i) for i in range(self.up_nums)] | |
for i in range(self.up_nums): | |
up.append(UpBlock2d(channel[i], channel[i]//2, kernel_size=3, padding=1)) | |
self.up = nn.ModuleList(up) | |
channel = [hourglass_output_size[-i-1] for i in range(self.occlusion_num-self.up_nums)[::-1]] | |
for i in range(self.up_nums): | |
channel.append(hourglass_output_size[-1]//(2**(i+1))) | |
occlusion = [] | |
for i in range(self.occlusion_num): | |
occlusion.append(nn.Conv2d(channel[i], 1, kernel_size=(7, 7), padding=(3, 3))) | |
self.occlusion = nn.ModuleList(occlusion) | |
else: | |
occlusion = [nn.Conv2d(hourglass_output_size[-1], 1, kernel_size=(7, 7), padding=(3, 3))] | |
self.occlusion = nn.ModuleList(occlusion) | |
self.num_tps = num_tps | |
self.bg = bg | |
self.kp_variance = kp_variance | |
def create_heatmap_representations(self, source_image, kp_driving, kp_source): | |
spatial_size = source_image.shape[2:] | |
gaussian_driving = kp2gaussian(kp_driving['fg_kp'], spatial_size=spatial_size, kp_variance=self.kp_variance) | |
gaussian_source = kp2gaussian(kp_source['fg_kp'], spatial_size=spatial_size, kp_variance=self.kp_variance) | |
heatmap = gaussian_driving - gaussian_source | |
zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1]).type(heatmap.type()).to(heatmap.device) | |
heatmap = torch.cat([zeros, heatmap], dim=1) | |
return heatmap | |
def create_transformations(self, source_image, kp_driving, kp_source, bg_param): | |
# K TPS transformaions | |
bs, _, h, w = source_image.shape | |
kp_1 = kp_driving['fg_kp'] | |
kp_2 = kp_source['fg_kp'] | |
kp_1 = kp_1.view(bs, -1, 5, 2) | |
kp_2 = kp_2.view(bs, -1, 5, 2) | |
trans = TPS(mode = 'kp', bs = bs, kp_1 = kp_1, kp_2 = kp_2) | |
driving_to_source = trans.transform_frame(source_image) | |
identity_grid = make_coordinate_grid((h, w), type=kp_1.type()).to(kp_1.device) | |
identity_grid = identity_grid.view(1, 1, h, w, 2) | |
identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1) | |
# affine background transformation | |
if not (bg_param is None): | |
identity_grid = to_homogeneous(identity_grid) | |
identity_grid = torch.matmul(bg_param.view(bs, 1, 1, 1, 3, 3), identity_grid.unsqueeze(-1)).squeeze(-1) | |
identity_grid = from_homogeneous(identity_grid) | |
transformations = torch.cat([identity_grid, driving_to_source], dim=1) | |
return transformations | |
def create_deformed_source_image(self, source_image, transformations): | |
bs, _, h, w = source_image.shape | |
source_repeat = source_image.unsqueeze(1).unsqueeze(1).repeat(1, self.num_tps + 1, 1, 1, 1, 1) | |
source_repeat = source_repeat.view(bs * (self.num_tps + 1), -1, h, w) | |
transformations = transformations.view((bs * (self.num_tps + 1), h, w, -1)) | |
deformed = F.grid_sample(source_repeat, transformations, align_corners=True) | |
deformed = deformed.view((bs, self.num_tps+1, -1, h, w)) | |
return deformed | |
def dropout_softmax(self, X, P): | |
''' | |
Dropout for TPS transformations. Eq(7) and Eq(8) in the paper. | |
''' | |
drop = (torch.rand(X.shape[0],X.shape[1]) < (1-P)).type(X.type()).to(X.device) | |
drop[..., 0] = 1 | |
drop = drop.repeat(X.shape[2],X.shape[3],1,1).permute(2,3,0,1) | |
maxx = X.max(1).values.unsqueeze_(1) | |
X = X - maxx | |
X_exp = X.exp() | |
X[:,1:,...] /= (1-P) | |
mask_bool =(drop == 0) | |
X_exp = X_exp.masked_fill(mask_bool, 0) | |
partition = X_exp.sum(dim=1, keepdim=True) + 1e-6 | |
return X_exp / partition | |
def forward(self, source_image, kp_driving, kp_source, bg_param = None, dropout_flag=False, dropout_p = 0): | |
if self.scale_factor != 1: | |
source_image = self.down(source_image) | |
bs, _, h, w = source_image.shape | |
out_dict = dict() | |
heatmap_representation = self.create_heatmap_representations(source_image, kp_driving, kp_source) | |
transformations = self.create_transformations(source_image, kp_driving, kp_source, bg_param) | |
deformed_source = self.create_deformed_source_image(source_image, transformations) | |
out_dict['deformed_source'] = deformed_source | |
# out_dict['transformations'] = transformations | |
deformed_source = deformed_source.view(bs,-1,h,w) | |
input = torch.cat([heatmap_representation, deformed_source], dim=1) | |
input = input.view(bs, -1, h, w) | |
prediction = self.hourglass(input, mode = 1) | |
contribution_maps = self.maps(prediction[-1]) | |
if(dropout_flag): | |
contribution_maps = self.dropout_softmax(contribution_maps, dropout_p) | |
else: | |
contribution_maps = F.softmax(contribution_maps, dim=1) | |
out_dict['contribution_maps'] = contribution_maps | |
# Combine the K+1 transformations | |
# Eq(6) in the paper | |
contribution_maps = contribution_maps.unsqueeze(2) | |
transformations = transformations.permute(0, 1, 4, 2, 3) | |
deformation = (transformations * contribution_maps).sum(dim=1) | |
deformation = deformation.permute(0, 2, 3, 1) | |
out_dict['deformation'] = deformation # Optical Flow | |
occlusion_map = [] | |
if self.multi_mask: | |
for i in range(self.occlusion_num-self.up_nums): | |
occlusion_map.append(torch.sigmoid(self.occlusion[i](prediction[self.up_nums-self.occlusion_num+i]))) | |
prediction = prediction[-1] | |
for i in range(self.up_nums): | |
prediction = self.up[i](prediction) | |
occlusion_map.append(torch.sigmoid(self.occlusion[i+self.occlusion_num-self.up_nums](prediction))) | |
else: | |
occlusion_map.append(torch.sigmoid(self.occlusion[0](prediction[-1]))) | |
out_dict['occlusion_map'] = occlusion_map # Multi-resolution Occlusion Masks | |
return out_dict | |