Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from modules.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d | |
from modules.dense_motion import DenseMotionNetwork | |
class InpaintingNetwork(nn.Module): | |
""" | |
Inpaint the missing regions and reconstruct the Driving image. | |
""" | |
def __init__(self, num_channels, block_expansion, max_features, num_down_blocks, multi_mask = True, **kwargs): | |
super(InpaintingNetwork, self).__init__() | |
self.num_down_blocks = num_down_blocks | |
self.multi_mask = multi_mask | |
self.first = SameBlock2d(num_channels, block_expansion, kernel_size=(7, 7), padding=(3, 3)) | |
down_blocks = [] | |
up_blocks = [] | |
resblock = [] | |
for i in range(num_down_blocks): | |
in_features = min(max_features, block_expansion * (2 ** i)) | |
out_features = min(max_features, block_expansion * (2 ** (i + 1))) | |
down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) | |
decoder_in_feature = out_features * 2 | |
if i==num_down_blocks-1: | |
decoder_in_feature = out_features | |
up_blocks.append(UpBlock2d(decoder_in_feature, in_features, kernel_size=(3, 3), padding=(1, 1))) | |
resblock.append(ResBlock2d(decoder_in_feature, kernel_size=(3, 3), padding=(1, 1))) | |
resblock.append(ResBlock2d(decoder_in_feature, kernel_size=(3, 3), padding=(1, 1))) | |
self.down_blocks = nn.ModuleList(down_blocks) | |
self.up_blocks = nn.ModuleList(up_blocks[::-1]) | |
self.resblock = nn.ModuleList(resblock[::-1]) | |
self.final = nn.Conv2d(block_expansion, num_channels, kernel_size=(7, 7), padding=(3, 3)) | |
self.num_channels = num_channels | |
def deform_input(self, inp, deformation): | |
_, h_old, w_old, _ = deformation.shape | |
_, _, h, w = inp.shape | |
if h_old != h or w_old != w: | |
deformation = deformation.permute(0, 3, 1, 2) | |
deformation = F.interpolate(deformation, size=(h, w), mode='bilinear', align_corners=True) | |
deformation = deformation.permute(0, 2, 3, 1) | |
return F.grid_sample(inp, deformation,align_corners=True) | |
def occlude_input(self, inp, occlusion_map): | |
if not self.multi_mask: | |
if inp.shape[2] != occlusion_map.shape[2] or inp.shape[3] != occlusion_map.shape[3]: | |
occlusion_map = F.interpolate(occlusion_map, size=inp.shape[2:], mode='bilinear',align_corners=True) | |
out = inp * occlusion_map | |
return out | |
def forward(self, source_image, dense_motion): | |
out = self.first(source_image) | |
encoder_map = [out] | |
for i in range(len(self.down_blocks)): | |
out = self.down_blocks[i](out) | |
encoder_map.append(out) | |
output_dict = {} | |
output_dict['contribution_maps'] = dense_motion['contribution_maps'] | |
output_dict['deformed_source'] = dense_motion['deformed_source'] | |
occlusion_map = dense_motion['occlusion_map'] | |
output_dict['occlusion_map'] = occlusion_map | |
deformation = dense_motion['deformation'] | |
out_ij = self.deform_input(out.detach(), deformation) | |
out = self.deform_input(out, deformation) | |
out_ij = self.occlude_input(out_ij, occlusion_map[0].detach()) | |
out = self.occlude_input(out, occlusion_map[0]) | |
warped_encoder_maps = [] | |
warped_encoder_maps.append(out_ij) | |
for i in range(self.num_down_blocks): | |
out = self.resblock[2*i](out) | |
out = self.resblock[2*i+1](out) | |
out = self.up_blocks[i](out) | |
encode_i = encoder_map[-(i+2)] | |
encode_ij = self.deform_input(encode_i.detach(), deformation) | |
encode_i = self.deform_input(encode_i, deformation) | |
occlusion_ind = 0 | |
if self.multi_mask: | |
occlusion_ind = i+1 | |
encode_ij = self.occlude_input(encode_ij, occlusion_map[occlusion_ind].detach()) | |
encode_i = self.occlude_input(encode_i, occlusion_map[occlusion_ind]) | |
warped_encoder_maps.append(encode_ij) | |
if(i==self.num_down_blocks-1): | |
break | |
out = torch.cat([out, encode_i], 1) | |
deformed_source = self.deform_input(source_image, deformation) | |
output_dict["deformed"] = deformed_source | |
output_dict["warped_encoder_maps"] = warped_encoder_maps | |
occlusion_last = occlusion_map[-1] | |
if not self.multi_mask: | |
occlusion_last = F.interpolate(occlusion_last, size=out.shape[2:], mode='bilinear',align_corners=True) | |
out = out * (1 - occlusion_last) + encode_i | |
out = self.final(out) | |
out = torch.sigmoid(out) | |
out = out * (1 - occlusion_last) + deformed_source * occlusion_last | |
output_dict["prediction"] = out | |
return output_dict | |
def get_encode(self, driver_image, occlusion_map): | |
out = self.first(driver_image) | |
encoder_map = [] | |
encoder_map.append(self.occlude_input(out.detach(), occlusion_map[-1].detach())) | |
for i in range(len(self.down_blocks)): | |
out = self.down_blocks[i](out.detach()) | |
out_mask = self.occlude_input(out.detach(), occlusion_map[2-i].detach()) | |
encoder_map.append(out_mask.detach()) | |
return encoder_map | |