photo2video / modules /inpainting_network.py
Tolga
version1
280b585
import torch
from torch import nn
import torch.nn.functional as F
from modules.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d
from modules.dense_motion import DenseMotionNetwork
class InpaintingNetwork(nn.Module):
"""
Inpaint the missing regions and reconstruct the Driving image.
"""
def __init__(self, num_channels, block_expansion, max_features, num_down_blocks, multi_mask = True, **kwargs):
super(InpaintingNetwork, self).__init__()
self.num_down_blocks = num_down_blocks
self.multi_mask = multi_mask
self.first = SameBlock2d(num_channels, block_expansion, kernel_size=(7, 7), padding=(3, 3))
down_blocks = []
up_blocks = []
resblock = []
for i in range(num_down_blocks):
in_features = min(max_features, block_expansion * (2 ** i))
out_features = min(max_features, block_expansion * (2 ** (i + 1)))
down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
decoder_in_feature = out_features * 2
if i==num_down_blocks-1:
decoder_in_feature = out_features
up_blocks.append(UpBlock2d(decoder_in_feature, in_features, kernel_size=(3, 3), padding=(1, 1)))
resblock.append(ResBlock2d(decoder_in_feature, kernel_size=(3, 3), padding=(1, 1)))
resblock.append(ResBlock2d(decoder_in_feature, kernel_size=(3, 3), padding=(1, 1)))
self.down_blocks = nn.ModuleList(down_blocks)
self.up_blocks = nn.ModuleList(up_blocks[::-1])
self.resblock = nn.ModuleList(resblock[::-1])
self.final = nn.Conv2d(block_expansion, num_channels, kernel_size=(7, 7), padding=(3, 3))
self.num_channels = num_channels
def deform_input(self, inp, deformation):
_, h_old, w_old, _ = deformation.shape
_, _, h, w = inp.shape
if h_old != h or w_old != w:
deformation = deformation.permute(0, 3, 1, 2)
deformation = F.interpolate(deformation, size=(h, w), mode='bilinear', align_corners=True)
deformation = deformation.permute(0, 2, 3, 1)
return F.grid_sample(inp, deformation,align_corners=True)
def occlude_input(self, inp, occlusion_map):
if not self.multi_mask:
if inp.shape[2] != occlusion_map.shape[2] or inp.shape[3] != occlusion_map.shape[3]:
occlusion_map = F.interpolate(occlusion_map, size=inp.shape[2:], mode='bilinear',align_corners=True)
out = inp * occlusion_map
return out
def forward(self, source_image, dense_motion):
out = self.first(source_image)
encoder_map = [out]
for i in range(len(self.down_blocks)):
out = self.down_blocks[i](out)
encoder_map.append(out)
output_dict = {}
output_dict['contribution_maps'] = dense_motion['contribution_maps']
output_dict['deformed_source'] = dense_motion['deformed_source']
occlusion_map = dense_motion['occlusion_map']
output_dict['occlusion_map'] = occlusion_map
deformation = dense_motion['deformation']
out_ij = self.deform_input(out.detach(), deformation)
out = self.deform_input(out, deformation)
out_ij = self.occlude_input(out_ij, occlusion_map[0].detach())
out = self.occlude_input(out, occlusion_map[0])
warped_encoder_maps = []
warped_encoder_maps.append(out_ij)
for i in range(self.num_down_blocks):
out = self.resblock[2*i](out)
out = self.resblock[2*i+1](out)
out = self.up_blocks[i](out)
encode_i = encoder_map[-(i+2)]
encode_ij = self.deform_input(encode_i.detach(), deformation)
encode_i = self.deform_input(encode_i, deformation)
occlusion_ind = 0
if self.multi_mask:
occlusion_ind = i+1
encode_ij = self.occlude_input(encode_ij, occlusion_map[occlusion_ind].detach())
encode_i = self.occlude_input(encode_i, occlusion_map[occlusion_ind])
warped_encoder_maps.append(encode_ij)
if(i==self.num_down_blocks-1):
break
out = torch.cat([out, encode_i], 1)
deformed_source = self.deform_input(source_image, deformation)
output_dict["deformed"] = deformed_source
output_dict["warped_encoder_maps"] = warped_encoder_maps
occlusion_last = occlusion_map[-1]
if not self.multi_mask:
occlusion_last = F.interpolate(occlusion_last, size=out.shape[2:], mode='bilinear',align_corners=True)
out = out * (1 - occlusion_last) + encode_i
out = self.final(out)
out = torch.sigmoid(out)
out = out * (1 - occlusion_last) + deformed_source * occlusion_last
output_dict["prediction"] = out
return output_dict
def get_encode(self, driver_image, occlusion_map):
out = self.first(driver_image)
encoder_map = []
encoder_map.append(self.occlude_input(out.detach(), occlusion_map[-1].detach()))
for i in range(len(self.down_blocks)):
out = self.down_blocks[i](out.detach())
out_mask = self.occlude_input(out.detach(), occlusion_map[2-i].detach())
encoder_map.append(out_mask.detach())
return encoder_map