import torch from torch import nn import torch.nn.functional as F from modules.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d from modules.dense_motion import DenseMotionNetwork class InpaintingNetwork(nn.Module): """ Inpaint the missing regions and reconstruct the Driving image. """ def __init__(self, num_channels, block_expansion, max_features, num_down_blocks, multi_mask = True, **kwargs): super(InpaintingNetwork, self).__init__() self.num_down_blocks = num_down_blocks self.multi_mask = multi_mask self.first = SameBlock2d(num_channels, block_expansion, kernel_size=(7, 7), padding=(3, 3)) down_blocks = [] up_blocks = [] resblock = [] for i in range(num_down_blocks): in_features = min(max_features, block_expansion * (2 ** i)) out_features = min(max_features, block_expansion * (2 ** (i + 1))) down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) decoder_in_feature = out_features * 2 if i==num_down_blocks-1: decoder_in_feature = out_features up_blocks.append(UpBlock2d(decoder_in_feature, in_features, kernel_size=(3, 3), padding=(1, 1))) resblock.append(ResBlock2d(decoder_in_feature, kernel_size=(3, 3), padding=(1, 1))) resblock.append(ResBlock2d(decoder_in_feature, kernel_size=(3, 3), padding=(1, 1))) self.down_blocks = nn.ModuleList(down_blocks) self.up_blocks = nn.ModuleList(up_blocks[::-1]) self.resblock = nn.ModuleList(resblock[::-1]) self.final = nn.Conv2d(block_expansion, num_channels, kernel_size=(7, 7), padding=(3, 3)) self.num_channels = num_channels def deform_input(self, inp, deformation): _, h_old, w_old, _ = deformation.shape _, _, h, w = inp.shape if h_old != h or w_old != w: deformation = deformation.permute(0, 3, 1, 2) deformation = F.interpolate(deformation, size=(h, w), mode='bilinear', align_corners=True) deformation = deformation.permute(0, 2, 3, 1) return F.grid_sample(inp, deformation,align_corners=True) def occlude_input(self, inp, occlusion_map): if not self.multi_mask: if inp.shape[2] != occlusion_map.shape[2] or inp.shape[3] != occlusion_map.shape[3]: occlusion_map = F.interpolate(occlusion_map, size=inp.shape[2:], mode='bilinear',align_corners=True) out = inp * occlusion_map return out def forward(self, source_image, dense_motion): out = self.first(source_image) encoder_map = [out] for i in range(len(self.down_blocks)): out = self.down_blocks[i](out) encoder_map.append(out) output_dict = {} output_dict['contribution_maps'] = dense_motion['contribution_maps'] output_dict['deformed_source'] = dense_motion['deformed_source'] occlusion_map = dense_motion['occlusion_map'] output_dict['occlusion_map'] = occlusion_map deformation = dense_motion['deformation'] out_ij = self.deform_input(out.detach(), deformation) out = self.deform_input(out, deformation) out_ij = self.occlude_input(out_ij, occlusion_map[0].detach()) out = self.occlude_input(out, occlusion_map[0]) warped_encoder_maps = [] warped_encoder_maps.append(out_ij) for i in range(self.num_down_blocks): out = self.resblock[2*i](out) out = self.resblock[2*i+1](out) out = self.up_blocks[i](out) encode_i = encoder_map[-(i+2)] encode_ij = self.deform_input(encode_i.detach(), deformation) encode_i = self.deform_input(encode_i, deformation) occlusion_ind = 0 if self.multi_mask: occlusion_ind = i+1 encode_ij = self.occlude_input(encode_ij, occlusion_map[occlusion_ind].detach()) encode_i = self.occlude_input(encode_i, occlusion_map[occlusion_ind]) warped_encoder_maps.append(encode_ij) if(i==self.num_down_blocks-1): break out = torch.cat([out, encode_i], 1) deformed_source = self.deform_input(source_image, deformation) output_dict["deformed"] = deformed_source output_dict["warped_encoder_maps"] = warped_encoder_maps occlusion_last = occlusion_map[-1] if not self.multi_mask: occlusion_last = F.interpolate(occlusion_last, size=out.shape[2:], mode='bilinear',align_corners=True) out = out * (1 - occlusion_last) + encode_i out = self.final(out) out = torch.sigmoid(out) out = out * (1 - occlusion_last) + deformed_source * occlusion_last output_dict["prediction"] = out return output_dict def get_encode(self, driver_image, occlusion_map): out = self.first(driver_image) encoder_map = [] encoder_map.append(self.occlude_input(out.detach(), occlusion_map[-1].detach())) for i in range(len(self.down_blocks)): out = self.down_blocks[i](out.detach()) out_mask = self.occlude_input(out.detach(), occlusion_map[2-i].detach()) encoder_map.append(out_mask.detach()) return encoder_map