from torch import nn import torch.nn.functional as F import torch class TPS: ''' TPS transformation, mode 'kp' for Eq(2) in the paper, mode 'random' for equivariance loss. ''' def __init__(self, mode, bs, **kwargs): self.bs = bs self.mode = mode if mode == 'random': noise = torch.normal(mean=0, std=kwargs['sigma_affine'] * torch.ones([bs, 2, 3])) self.theta = noise + torch.eye(2, 3).view(1, 2, 3) self.control_points = make_coordinate_grid((kwargs['points_tps'], kwargs['points_tps']), type=noise.type()) self.control_points = self.control_points.unsqueeze(0) self.control_params = torch.normal(mean=0, std=kwargs['sigma_tps'] * torch.ones([bs, 1, kwargs['points_tps'] ** 2])) elif mode == 'kp': kp_1 = kwargs["kp_1"] kp_2 = kwargs["kp_2"] device = kp_1.device kp_type = kp_1.type() self.gs = kp_1.shape[1] n = kp_1.shape[2] K = torch.norm(kp_1[:,:,:, None]-kp_1[:,:, None, :], dim=4, p=2) K = K**2 K = K * torch.log(K+1e-9) one1 = torch.ones(self.bs, kp_1.shape[1], kp_1.shape[2], 1).to(device).type(kp_type) kp_1p = torch.cat([kp_1,one1], 3) zero = torch.zeros(self.bs, kp_1.shape[1], 3, 3).to(device).type(kp_type) P = torch.cat([kp_1p, zero],2) L = torch.cat([K,kp_1p.permute(0,1,3,2)],2) L = torch.cat([L,P],3) zero = torch.zeros(self.bs, kp_1.shape[1], 3, 2).to(device).type(kp_type) Y = torch.cat([kp_2, zero], 2) one = torch.eye(L.shape[2]).expand(L.shape).to(device).type(kp_type)*0.01 L = L + one param = torch.matmul(torch.inverse(L),Y) self.theta = param[:,:,n:,:].permute(0,1,3,2) self.control_points = kp_1 self.control_params = param[:,:,:n,:] else: raise Exception("Error TPS mode") def transform_frame(self, frame): grid = make_coordinate_grid(frame.shape[2:], type=frame.type()).unsqueeze(0).to(frame.device) grid = grid.view(1, frame.shape[2] * frame.shape[3], 2) shape = [self.bs, frame.shape[2], frame.shape[3], 2] if self.mode == 'kp': shape.insert(1, self.gs) grid = self.warp_coordinates(grid).view(*shape) return grid def warp_coordinates(self, coordinates): theta = self.theta.type(coordinates.type()).to(coordinates.device) control_points = self.control_points.type(coordinates.type()).to(coordinates.device) control_params = self.control_params.type(coordinates.type()).to(coordinates.device) if self.mode == 'kp': transformed = torch.matmul(theta[:, :, :, :2], coordinates.permute(0, 2, 1)) + theta[:, :, :, 2:] distances = coordinates.view(coordinates.shape[0], 1, 1, -1, 2) - control_points.view(self.bs, control_points.shape[1], -1, 1, 2) distances = distances ** 2 result = distances.sum(-1) result = result * torch.log(result + 1e-9) result = torch.matmul(result.permute(0, 1, 3, 2), control_params) transformed = transformed.permute(0, 1, 3, 2) + result elif self.mode == 'random': theta = theta.unsqueeze(1) transformed = torch.matmul(theta[:, :, :, :2], coordinates.unsqueeze(-1)) + theta[:, :, :, 2:] transformed = transformed.squeeze(-1) ances = coordinates.view(coordinates.shape[0], -1, 1, 2) - control_points.view(1, 1, -1, 2) distances = ances ** 2 result = distances.sum(-1) result = result * torch.log(result + 1e-9) result = result * control_params result = result.sum(dim=2).view(self.bs, coordinates.shape[1], 1) transformed = transformed + result else: raise Exception("Error TPS mode") return transformed def kp2gaussian(kp, spatial_size, kp_variance): """ Transform a keypoint into gaussian like representation """ coordinate_grid = make_coordinate_grid(spatial_size, kp.type()).to(kp.device) number_of_leading_dimensions = len(kp.shape) - 1 shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape coordinate_grid = coordinate_grid.view(*shape) repeats = kp.shape[:number_of_leading_dimensions] + (1, 1, 1) coordinate_grid = coordinate_grid.repeat(*repeats) # Preprocess kp shape shape = kp.shape[:number_of_leading_dimensions] + (1, 1, 2) kp = kp.view(*shape) mean_sub = (coordinate_grid - kp) out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) return out def make_coordinate_grid(spatial_size, type): """ Create a meshgrid [-1,1] x [-1,1] of given spatial_size. """ h, w = spatial_size x = torch.arange(w).type(type) y = torch.arange(h).type(type) x = (2 * (x / (w - 1)) - 1) y = (2 * (y / (h - 1)) - 1) yy = y.view(-1, 1).repeat(1, w) xx = x.view(1, -1).repeat(h, 1) meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2) return meshed class ResBlock2d(nn.Module): """ Res block, preserve spatial resolution. """ def __init__(self, in_features, kernel_size, padding): super(ResBlock2d, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding) self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding) self.norm1 = nn.InstanceNorm2d(in_features, affine=True) self.norm2 = nn.InstanceNorm2d(in_features, affine=True) def forward(self, x): out = self.norm1(x) out = F.relu(out) out = self.conv1(out) out = self.norm2(out) out = F.relu(out) out = self.conv2(out) out += x return out class UpBlock2d(nn.Module): """ Upsampling block for use in decoder. """ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): super(UpBlock2d, self).__init__() self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) self.norm = nn.InstanceNorm2d(out_features, affine=True) def forward(self, x): out = F.interpolate(x, scale_factor=2) out = self.conv(out) out = self.norm(out) out = F.relu(out) return out class DownBlock2d(nn.Module): """ Downsampling block for use in encoder. """ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): super(DownBlock2d, self).__init__() self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) self.norm = nn.InstanceNorm2d(out_features, affine=True) self.pool = nn.AvgPool2d(kernel_size=(2, 2)) def forward(self, x): out = self.conv(x) out = self.norm(out) out = F.relu(out) out = self.pool(out) return out class SameBlock2d(nn.Module): """ Simple block, preserve spatial resolution. """ def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1): super(SameBlock2d, self).__init__() self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) self.norm = nn.InstanceNorm2d(out_features, affine=True) def forward(self, x): out = self.conv(x) out = self.norm(out) out = F.relu(out) return out class Encoder(nn.Module): """ Hourglass Encoder """ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): super(Encoder, self).__init__() down_blocks = [] for i in range(num_blocks): down_blocks.append(DownBlock2d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1)) self.down_blocks = nn.ModuleList(down_blocks) def forward(self, x): outs = [x] #print('encoder:' ,outs[-1].shape) for down_block in self.down_blocks: outs.append(down_block(outs[-1])) #print('encoder:' ,outs[-1].shape) return outs class Decoder(nn.Module): """ Hourglass Decoder """ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): super(Decoder, self).__init__() up_blocks = [] self.out_channels = [] for i in range(num_blocks)[::-1]: in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1))) self.out_channels.append(in_filters) out_filters = min(max_features, block_expansion * (2 ** i)) up_blocks.append(UpBlock2d(in_filters, out_filters, kernel_size=3, padding=1)) self.up_blocks = nn.ModuleList(up_blocks) self.out_channels.append(block_expansion + in_features) # self.out_filters = block_expansion + in_features def forward(self, x, mode = 0): out = x.pop() outs = [] for up_block in self.up_blocks: out = up_block(out) skip = x.pop() out = torch.cat([out, skip], dim=1) outs.append(out) if(mode == 0): return out else: return outs class Hourglass(nn.Module): """ Hourglass architecture. """ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): super(Hourglass, self).__init__() self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features) self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features) self.out_channels = self.decoder.out_channels # self.out_filters = self.decoder.out_filters def forward(self, x, mode = 0): return self.decoder(self.encoder(x), mode) class AntiAliasInterpolation2d(nn.Module): """ Band-limited downsampling, for better preservation of the input signal. """ def __init__(self, channels, scale): super(AntiAliasInterpolation2d, self).__init__() sigma = (1 / scale - 1) / 2 kernel_size = 2 * round(sigma * 4) + 1 self.ka = kernel_size // 2 self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka kernel_size = [kernel_size, kernel_size] sigma = [sigma, sigma] # The gaussian kernel is the product of the # gaussian function of each dimension. kernel = 1 meshgrids = torch.meshgrid( [ torch.arange(size, dtype=torch.float32) for size in kernel_size ] ) for size, std, mgrid in zip(kernel_size, sigma, meshgrids): mean = (size - 1) / 2 kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2)) # Make sure sum of values in gaussian kernel equals 1. kernel = kernel / torch.sum(kernel) # Reshape to depthwise convolutional weight kernel = kernel.view(1, 1, *kernel.size()) kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) self.register_buffer('weight', kernel) self.groups = channels self.scale = scale def forward(self, input): if self.scale == 1.0: return input out = F.pad(input, (self.ka, self.kb, self.ka, self.kb)) out = F.conv2d(out, weight=self.weight, groups=self.groups) out = F.interpolate(out, scale_factor=(self.scale, self.scale)) return out def to_homogeneous(coordinates): ones_shape = list(coordinates.shape) ones_shape[-1] = 1 ones = torch.ones(ones_shape).type(coordinates.type()) return torch.cat([coordinates, ones], dim=-1) def from_homogeneous(coordinates): return coordinates[..., :2] / coordinates[..., 2:3]