from torch import nn import torch.nn.functional as F import torch from modules.util import Hourglass, AntiAliasInterpolation2d, make_coordinate_grid, kp2gaussian from modules.util import to_homogeneous, from_homogeneous, UpBlock2d, TPS import math class DenseMotionNetwork(nn.Module): """ Module that estimating an optical flow and multi-resolution occlusion masks from K TPS transformations and an affine transformation. """ def __init__(self, block_expansion, num_blocks, max_features, num_tps, num_channels, scale_factor=0.25, bg = False, multi_mask = True, kp_variance=0.01): super(DenseMotionNetwork, self).__init__() if scale_factor != 1: self.down = AntiAliasInterpolation2d(num_channels, scale_factor) self.scale_factor = scale_factor self.multi_mask = multi_mask self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_channels * (num_tps+1) + num_tps*5+1), max_features=max_features, num_blocks=num_blocks) hourglass_output_size = self.hourglass.out_channels self.maps = nn.Conv2d(hourglass_output_size[-1], num_tps + 1, kernel_size=(7, 7), padding=(3, 3)) if multi_mask: up = [] self.up_nums = int(math.log(1/scale_factor, 2)) self.occlusion_num = 4 channel = [hourglass_output_size[-1]//(2**i) for i in range(self.up_nums)] for i in range(self.up_nums): up.append(UpBlock2d(channel[i], channel[i]//2, kernel_size=3, padding=1)) self.up = nn.ModuleList(up) channel = [hourglass_output_size[-i-1] for i in range(self.occlusion_num-self.up_nums)[::-1]] for i in range(self.up_nums): channel.append(hourglass_output_size[-1]//(2**(i+1))) occlusion = [] for i in range(self.occlusion_num): occlusion.append(nn.Conv2d(channel[i], 1, kernel_size=(7, 7), padding=(3, 3))) self.occlusion = nn.ModuleList(occlusion) else: occlusion = [nn.Conv2d(hourglass_output_size[-1], 1, kernel_size=(7, 7), padding=(3, 3))] self.occlusion = nn.ModuleList(occlusion) self.num_tps = num_tps self.bg = bg self.kp_variance = kp_variance def create_heatmap_representations(self, source_image, kp_driving, kp_source): spatial_size = source_image.shape[2:] gaussian_driving = kp2gaussian(kp_driving['fg_kp'], spatial_size=spatial_size, kp_variance=self.kp_variance) gaussian_source = kp2gaussian(kp_source['fg_kp'], spatial_size=spatial_size, kp_variance=self.kp_variance) heatmap = gaussian_driving - gaussian_source zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1]).type(heatmap.type()).to(heatmap.device) heatmap = torch.cat([zeros, heatmap], dim=1) return heatmap def create_transformations(self, source_image, kp_driving, kp_source, bg_param): # K TPS transformaions bs, _, h, w = source_image.shape kp_1 = kp_driving['fg_kp'] kp_2 = kp_source['fg_kp'] kp_1 = kp_1.view(bs, -1, 5, 2) kp_2 = kp_2.view(bs, -1, 5, 2) trans = TPS(mode = 'kp', bs = bs, kp_1 = kp_1, kp_2 = kp_2) driving_to_source = trans.transform_frame(source_image) identity_grid = make_coordinate_grid((h, w), type=kp_1.type()).to(kp_1.device) identity_grid = identity_grid.view(1, 1, h, w, 2) identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1) # affine background transformation if not (bg_param is None): identity_grid = to_homogeneous(identity_grid) identity_grid = torch.matmul(bg_param.view(bs, 1, 1, 1, 3, 3), identity_grid.unsqueeze(-1)).squeeze(-1) identity_grid = from_homogeneous(identity_grid) transformations = torch.cat([identity_grid, driving_to_source], dim=1) return transformations def create_deformed_source_image(self, source_image, transformations): bs, _, h, w = source_image.shape source_repeat = source_image.unsqueeze(1).unsqueeze(1).repeat(1, self.num_tps + 1, 1, 1, 1, 1) source_repeat = source_repeat.view(bs * (self.num_tps + 1), -1, h, w) transformations = transformations.view((bs * (self.num_tps + 1), h, w, -1)) deformed = F.grid_sample(source_repeat, transformations, align_corners=True) deformed = deformed.view((bs, self.num_tps+1, -1, h, w)) return deformed def dropout_softmax(self, X, P): ''' Dropout for TPS transformations. Eq(7) and Eq(8) in the paper. ''' drop = (torch.rand(X.shape[0],X.shape[1]) < (1-P)).type(X.type()).to(X.device) drop[..., 0] = 1 drop = drop.repeat(X.shape[2],X.shape[3],1,1).permute(2,3,0,1) maxx = X.max(1).values.unsqueeze_(1) X = X - maxx X_exp = X.exp() X[:,1:,...] /= (1-P) mask_bool =(drop == 0) X_exp = X_exp.masked_fill(mask_bool, 0) partition = X_exp.sum(dim=1, keepdim=True) + 1e-6 return X_exp / partition def forward(self, source_image, kp_driving, kp_source, bg_param = None, dropout_flag=False, dropout_p = 0): if self.scale_factor != 1: source_image = self.down(source_image) bs, _, h, w = source_image.shape out_dict = dict() heatmap_representation = self.create_heatmap_representations(source_image, kp_driving, kp_source) transformations = self.create_transformations(source_image, kp_driving, kp_source, bg_param) deformed_source = self.create_deformed_source_image(source_image, transformations) out_dict['deformed_source'] = deformed_source # out_dict['transformations'] = transformations deformed_source = deformed_source.view(bs,-1,h,w) input = torch.cat([heatmap_representation, deformed_source], dim=1) input = input.view(bs, -1, h, w) prediction = self.hourglass(input, mode = 1) contribution_maps = self.maps(prediction[-1]) if(dropout_flag): contribution_maps = self.dropout_softmax(contribution_maps, dropout_p) else: contribution_maps = F.softmax(contribution_maps, dim=1) out_dict['contribution_maps'] = contribution_maps # Combine the K+1 transformations # Eq(6) in the paper contribution_maps = contribution_maps.unsqueeze(2) transformations = transformations.permute(0, 1, 4, 2, 3) deformation = (transformations * contribution_maps).sum(dim=1) deformation = deformation.permute(0, 2, 3, 1) out_dict['deformation'] = deformation # Optical Flow occlusion_map = [] if self.multi_mask: for i in range(self.occlusion_num-self.up_nums): occlusion_map.append(torch.sigmoid(self.occlusion[i](prediction[self.up_nums-self.occlusion_num+i]))) prediction = prediction[-1] for i in range(self.up_nums): prediction = self.up[i](prediction) occlusion_map.append(torch.sigmoid(self.occlusion[i+self.occlusion_num-self.up_nums](prediction))) else: occlusion_map.append(torch.sigmoid(self.occlusion[0](prediction[-1]))) out_dict['occlusion_map'] = occlusion_map # Multi-resolution Occlusion Masks return out_dict