Spaces:
Paused
Paused
File size: 1,499 Bytes
91755d5 5652284 91755d5 38f62a2 91755d5 38f62a2 91755d5 08f150e 91755d5 e04d426 af1d4d5 e04d426 91755d5 26beed3 0db66af f12403d 91755d5 e16a5cb 5094b5e 91755d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import torch
from PIL import Image
import gradio as gr
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = torch.hub.load('mair-lab/mapl', 'mapl')
model.eval()
model.to(device, torch.float16)
def predict(image: Image.Image, question: str) -> str:
pixel_values = model.image_transform(image).unsqueeze(0).to(device, torch.float16)
input_ids = None
if question:
prompt = f"Please answer the question. Question: {question} Answer:" if '?' in question else question
input_ids = model.text_transform(prompt).input_ids.to(device)
generated_ids = model.generate(
pixel_values=pixel_values,
input_ids=input_ids,
max_new_tokens=100,
num_beams=5
)
answer = model.text_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return answer
predict(image=Image.new('RGB', (224, 224)), question="")
image = gr.components.Image(type='pil', label="Image")
question = gr.components.Textbox(info="Ask a visual question or leave empty for captioning", placeholder="What is this?", label="Question")
answer = gr.components.Textbox(label="Answer")
interface = gr.Interface(
fn=predict,
inputs=[image, question],
outputs=answer,
title="MAPL🍁",
description="Paper: [https://arxiv.org/abs/2210.07179](https://arxiv.org/abs/2210.07179)\nCode and weights: [https://github.com/mair-lab/mapl](https://github.com/mair-lab/mapl)",
allow_flagging='never')
interface.launch()
|