Spaces:
Paused
Paused
import torch | |
from PIL import Image | |
import gradio as gr | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model = torch.hub.load('mair-lab/mapl', 'mapl') | |
model.eval() | |
model.to(device=device, dtype=torch.bfloat16) | |
def predict(image: Image.Image, question: str) -> str: | |
pixel_values = model.image_transform(image).unsqueeze(0).to(device) | |
input_ids = None | |
if question: | |
text = f"Please answer the question. Question: {question} Answer:" if '?' in question else question | |
input_ids = model.text_transform(text).input_ids.to(device) | |
with torch.autocast(device_type=device, dtype=torch.bfloat16): | |
generated_ids = model.generate( | |
pixel_values=pixel_values, | |
input_ids=input_ids, | |
max_new_tokens=50 | |
) | |
answer = model.text_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
return answer | |
image = gr.components.Image(type='pil', label="Image") | |
question = gr.components.Textbox(value="What is this?", label="Question") | |
answer = gr.components.Textbox(label="Answer") | |
interface = gr.Interface( | |
fn=predict, | |
inputs=[image, question], | |
outputs=answer, | |
allow_flagging='never') | |
interface.launch() | |