File size: 5,497 Bytes
6724ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
from PIL import Image
import cv2
import numpy as np
import random

import torch
import torch.utils.data as data
import torchvision.transforms as transforms


class BaseDataset(data.Dataset):
    def __init__(self):
        super(BaseDataset, self).__init__()

    def name(self):
        return "BaseDataset"

    def initialize(self, opt):
        pass


class Rescale_fixed(object):
    """Rescale the input image into given size.

    Args:
        (w,h) (tuple): output size or x (int) then resized will be done in (x,x).
    """

    def __init__(self, output_size):
        self.output_size = output_size

    def __call__(self, image):
        return image.resize(self.output_size, Image.BICUBIC)


class Rescale_custom(object):
    """Rescale the input image and target image into randomly selected size with lower bound of min_size arg.

    Args:
        min_size (int): Minimum desired output size.
    """

    def __init__(self, min_size, max_size):
        assert isinstance(min_size, (int, float))
        self.min_size = min_size
        self.max_size = max_size

    def __call__(self, sample):

        input_image, target_image = sample["input_image"], sample["target_image"]

        assert input_image.size == target_image.size
        w, h = input_image.size

        # Randomly select size to resize
        if min(self.max_size, h, w) > self.min_size:
            self.output_size = np.random.randint(
                self.min_size, min(self.max_size, h, w)
            )
        else:
            self.output_size = self.min_size

        # calculate new size by keeping aspect ratio same
        if h > w:
            new_h, new_w = self.output_size * h / w, self.output_size
        else:
            new_h, new_w = self.output_size, self.output_size * w / h

        new_w, new_h = int(new_w), int(new_h)
        input_image = input_image.resize((new_w, new_h), Image.BICUBIC)
        target_image = target_image.resize((new_w, new_h), Image.BICUBIC)
        return {"input_image": input_image, "target_image": target_image}


class ToTensor(object):
    """Convert ndarrays in sample to Tensors."""

    def __init__(self):
        self.totensor = transforms.ToTensor()

    def __call__(self, sample):
        input_image, target_image = sample["input_image"], sample["target_image"]

        return {
            "input_image": self.totensor(input_image),
            "target_image": self.totensor(target_image),
        }


class RandomCrop_custom(object):
    """Crop randomly the image in a sample.

    Args:
        output_size (tuple or int): Desired output size. If int, square crop
            is made.
    """

    def __init__(self, output_size):
        assert isinstance(output_size, (int, tuple))
        if isinstance(output_size, int):
            self.output_size = (output_size, output_size)
        else:
            assert len(output_size) == 2
            self.output_size = output_size

        self.randomcrop = transforms.RandomCrop(self.output_size)

    def __call__(self, sample):
        input_image, target_image = sample["input_image"], sample["target_image"]
        cropped_imgs = self.randomcrop(torch.cat((input_image, target_image)))

        return {
            "input_image": cropped_imgs[
                :3,
                :,
            ],
            "target_image": cropped_imgs[
                3:,
                :,
            ],
        }


class Normalize_custom(object):
    """Normalize given dict into given mean and standard dev

    Args:
        mean (tuple or int): Desired mean to substract from dict's tensors
        std (tuple or int): Desired std to divide from dict's tensors
    """

    def __init__(self, mean, std):
        assert isinstance(mean, (float, tuple))
        if isinstance(mean, float):
            self.mean = (mean, mean, mean)
        else:
            assert len(mean) == 3
            self.mean = mean

        if isinstance(std, float):
            self.std = (std, std, std)
        else:
            assert len(std) == 3
            self.std = std

        self.normalize = transforms.Normalize(self.mean, self.std)

    def __call__(self, sample):
        input_image, target_image = sample["input_image"], sample["target_image"]

        return {
            "input_image": self.normalize(input_image),
            "target_image": self.normalize(target_image),
        }


class Normalize_image(object):
    """Normalize given tensor into given mean and standard dev

    Args:
        mean (float): Desired mean to substract from tensors
        std (float): Desired std to divide from tensors
    """

    def __init__(self, mean, std):
        assert isinstance(mean, (float))
        if isinstance(mean, float):
            self.mean = mean

        if isinstance(std, float):
            self.std = std

        self.normalize_1 = transforms.Normalize(self.mean, self.std)
        self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3)
        self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18)

    def __call__(self, image_tensor):
        if image_tensor.shape[0] == 1:
            return self.normalize_1(image_tensor)

        elif image_tensor.shape[0] == 3:
            return self.normalize_3(image_tensor)

        elif image_tensor.shape[0] == 18:
            return self.normalize_18(image_tensor)

        else:
            assert "Please set proper channels! Normlization implemented only for 1, 3 and 18"