from transformers import pipeline, AutoModelForMaskedLM, AutoTokenizer import gradio as gr model_name = "kuleshov-group/PlantCaduceus_l20" model = AutoModelForMaskedLM.from_pretrained(model_name, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) nlp = pipeline("fill-mask", model=model, tokenizer=tokenizer) def predict_masked_text(text): results = nlp(text) return [result['sequence'] for result in results] # Create the Gradio interface iface = gr.Interface( fn=predict_masked_text, inputs=gr.Textbox(lines=2, placeholder="Enter text with a [MASK] token..."), outputs=gr.Textbox(), title="Masked Language Modeling", description="Fill in the masked token in the input text." ) # Launch the interface iface.launch(share=True)