Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,22 @@
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
|
|
3 |
import requests
|
4 |
from io import BytesIO
|
5 |
-
from PIL import Image
|
6 |
import os
|
|
|
|
|
|
|
7 |
|
8 |
def translate_text(text, target_language='en'):
|
9 |
API_URL = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-ar-en"
|
10 |
headers = {"Authorization": f"Bearer {os.getenv('API_TOKEN')}"}
|
11 |
-
response = requests.post(API_URL, headers=headers, json=
|
12 |
|
13 |
if response.status_code == 200:
|
14 |
return response.json()[0]['translation_text']
|
|
|
15 |
else:
|
16 |
print("Failed to translate text:", response.text)
|
17 |
return text # Return the original text if translation fails
|
@@ -25,13 +30,15 @@ def query(payload, API_URL, headers):
|
|
25 |
def generate_image(prompt, model_choice, translate=False):
|
26 |
if translate:
|
27 |
prompt = translate_text(prompt, target_language='en') # Assuming you want to translate to English
|
28 |
-
|
29 |
model_urls = {
|
30 |
"Stable Diffusion v1.5": "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5",
|
31 |
"dalle-3-xl-v2": "https://api-inference.huggingface.co/models/ehristoforu/dalle-3-xl-v2",
|
32 |
"midjourney-v6": "https://api-inference.huggingface.co/models/Kvikontent/midjourney-v6",
|
33 |
"openjourney-v4": "https://api-inference.huggingface.co/models/prompthero/openjourney-v4",
|
34 |
"LCM_Dreamshaper_v7": "https://api-inference.huggingface.co/models/SimianLuo/LCM_Dreamshaper_v7",
|
|
|
|
|
|
|
35 |
}
|
36 |
API_URL = model_urls[model_choice]
|
37 |
|
@@ -43,6 +50,10 @@ def generate_image(prompt, model_choice, translate=False):
|
|
43 |
image = Image.open(BytesIO(data))
|
44 |
# Resize the image
|
45 |
image = image.resize((400, 400))
|
|
|
|
|
|
|
|
|
46 |
return image
|
47 |
|
48 |
except Exception as e:
|
@@ -65,11 +76,11 @@ description = "اكتب وصف للصورة التي تود من النظام ا
|
|
65 |
iface = gr.Interface(
|
66 |
fn=generate_image,
|
67 |
inputs=[
|
68 |
-
gr.Textbox(lines=2, placeholder="Enter the description of the image here..."),
|
69 |
-
gr.Dropdown(choices=["Stable Diffusion v1.5","dalle-3-xl-v2","midjourney-v6","openjourney-v4","LCM_Dreamshaper_v7"], label="Choose Model", value='Stable Diffusion v1.5'),
|
70 |
-
|
71 |
],
|
72 |
-
outputs=gr.Image(),
|
73 |
title=title,
|
74 |
description=description,
|
75 |
theme="default",
|
|
|
1 |
+
## app.py:
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
+
from diffusers import StableDiffusionPipeline
|
5 |
import requests
|
6 |
from io import BytesIO
|
|
|
7 |
import os
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
|
11 |
|
12 |
def translate_text(text, target_language='en'):
|
13 |
API_URL = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-ar-en"
|
14 |
headers = {"Authorization": f"Bearer {os.getenv('API_TOKEN')}"}
|
15 |
+
response = requests.post(API_URL, headers=headers, json=text)
|
16 |
|
17 |
if response.status_code == 200:
|
18 |
return response.json()[0]['translation_text']
|
19 |
+
|
20 |
else:
|
21 |
print("Failed to translate text:", response.text)
|
22 |
return text # Return the original text if translation fails
|
|
|
30 |
def generate_image(prompt, model_choice, translate=False):
|
31 |
if translate:
|
32 |
prompt = translate_text(prompt, target_language='en') # Assuming you want to translate to English
|
|
|
33 |
model_urls = {
|
34 |
"Stable Diffusion v1.5": "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5",
|
35 |
"dalle-3-xl-v2": "https://api-inference.huggingface.co/models/ehristoforu/dalle-3-xl-v2",
|
36 |
"midjourney-v6": "https://api-inference.huggingface.co/models/Kvikontent/midjourney-v6",
|
37 |
"openjourney-v4": "https://api-inference.huggingface.co/models/prompthero/openjourney-v4",
|
38 |
"LCM_Dreamshaper_v7": "https://api-inference.huggingface.co/models/SimianLuo/LCM_Dreamshaper_v7",
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
}
|
43 |
API_URL = model_urls[model_choice]
|
44 |
|
|
|
50 |
image = Image.open(BytesIO(data))
|
51 |
# Resize the image
|
52 |
image = image.resize((400, 400))
|
53 |
+
# Convert the image object back to bytes for Gradio output
|
54 |
+
buf = BytesIO()
|
55 |
+
image.save(buf, format='PNG')
|
56 |
+
buf.seek(0)
|
57 |
return image
|
58 |
|
59 |
except Exception as e:
|
|
|
76 |
iface = gr.Interface(
|
77 |
fn=generate_image,
|
78 |
inputs=[
|
79 |
+
gr.components.Textbox(lines=2, placeholder="Enter the description of the image here..."),
|
80 |
+
gr.components.Dropdown(choices=["Stable Diffusion v1.5","dalle-3-xl-v2","midjourney-v6","openjourney-v4","LCM_Dreamshaper_v7"], label="Choose Model", value='Stable Diffusion v1.5'),
|
81 |
+
|
82 |
],
|
83 |
+
outputs=gr.components.Image(),
|
84 |
title=title,
|
85 |
description=description,
|
86 |
theme="default",
|