Spaces:
Runtime error
Runtime error
File size: 19,203 Bytes
fc3814c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
"""
Video Face Manipulation Detection Through Ensemble of CNNs
Image and Sound Processing Lab - Politecnico di Milano
Nicolò Bonettini
Edoardo Daniele Cannas
Sara Mandelli
Luca Bondi
Paolo Bestagini
"""
import argparse
import os
import shutil
import warnings
import albumentations as A
import numpy as np
import pandas as pd
import torch
import torch.multiprocessing
from torchvision.transforms import ToPILImage, ToTensor
from isplutils import utils, split
torch.multiprocessing.set_sharing_strategy('file_system')
import torch.nn as nn
from albumentations.pytorch import ToTensorV2
from sklearn.metrics import roc_auc_score
from tensorboardX import SummaryWriter
from torch import optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from PIL import ImageChops, Image
from architectures import fornet
from isplutils.data import FrameFaceIterableDataset, load_face
def main():
# Args
parser = argparse.ArgumentParser()
parser.add_argument('--net', type=str, help='Net model class', required=True)
parser.add_argument('--traindb', type=str, help='Training datasets', nargs='+', choices=split.available_datasets,
required=True)
parser.add_argument('--valdb', type=str, help='Validation datasets', nargs='+', choices=split.available_datasets,
required=True)
parser.add_argument('--dfdc_faces_df_path', type=str, action='store',
help='Path to the Pandas Dataframe obtained from extract_faces.py on the DFDC dataset. '
'Required for training/validating on the DFDC dataset.')
parser.add_argument('--dfdc_faces_dir', type=str, action='store',
help='Path to the directory containing the faces extracted from the DFDC dataset. '
'Required for training/validating on the DFDC dataset.')
parser.add_argument('--ffpp_faces_df_path', type=str, action='store',
help='Path to the Pandas Dataframe obtained from extract_faces.py on the FF++ dataset. '
'Required for training/validating on the FF++ dataset.')
parser.add_argument('--ffpp_faces_dir', type=str, action='store',
help='Path to the directory containing the faces extracted from the FF++ dataset. '
'Required for training/validating on the FF++ dataset.')
parser.add_argument('--face', type=str, help='Face crop or scale', required=True,
choices=['scale', 'tight'])
parser.add_argument('--size', type=int, help='Train patch size', required=True)
parser.add_argument('--batch', type=int, help='Batch size to fit in GPU memory', default=32)
parser.add_argument('--lr', type=float, default=1e-5, help='Learning rate')
parser.add_argument('--valint', type=int, help='Validation interval (iterations)', default=500)
parser.add_argument('--patience', type=int, help='Patience before dropping the LR [validation intervals]',
default=10)
parser.add_argument('--maxiter', type=int, help='Maximum number of iterations', default=20000)
parser.add_argument('--init', type=str, help='Weight initialization file')
parser.add_argument('--scratch', action='store_true', help='Train from scratch')
parser.add_argument('--trainsamples', type=int, help='Limit the number of train samples per epoch', default=-1)
parser.add_argument('--valsamples', type=int, help='Limit the number of validation samples per epoch',
default=6000)
parser.add_argument('--logint', type=int, help='Training log interval (iterations)', default=100)
parser.add_argument('--workers', type=int, help='Num workers for data loaders', default=6)
parser.add_argument('--device', type=int, help='GPU device id', default=0)
parser.add_argument('--seed', type=int, help='Random seed', default=0)
parser.add_argument('--debug', action='store_true', help='Activate debug')
parser.add_argument('--suffix', type=str, help='Suffix to default tag')
parser.add_argument('--attention', action='store_true',
help='Enable Tensorboard log of attention masks')
parser.add_argument('--log_dir', type=str, help='Directory for saving the training logs',
default='runs/binclass/')
parser.add_argument('--models_dir', type=str, help='Directory for saving the models weights',
default='weights/binclass/')
args = parser.parse_args()
# Parse arguments
net_class = getattr(fornet, args.net)
train_datasets = args.traindb
val_datasets = args.valdb
dfdc_df_path = args.dfdc_faces_df_path
ffpp_df_path = args.ffpp_faces_df_path
dfdc_faces_dir = args.dfdc_faces_dir
ffpp_faces_dir = args.ffpp_faces_dir
face_policy = args.face
face_size = args.size
batch_size = args.batch
initial_lr = args.lr
validation_interval = args.valint
patience = args.patience
max_num_iterations = args.maxiter
initial_model = args.init
train_from_scratch = args.scratch
max_train_samples = args.trainsamples
max_val_samples = args.valsamples
log_interval = args.logint
num_workers = args.workers
device = torch.device('cuda:{:d}'.format(args.device)) if torch.cuda.is_available() else torch.device('cpu')
seed = args.seed
debug = args.debug
suffix = args.suffix
enable_attention = args.attention
weights_folder = args.models_dir
logs_folder = args.log_dir
# Random initialization
np.random.seed(seed)
torch.random.manual_seed(seed)
# Load net
net: nn.Module = net_class().to(device)
# Loss and optimizers
criterion = nn.BCEWithLogitsLoss()
min_lr = initial_lr * 1e-5
optimizer = optim.Adam(net.get_trainable_parameters(), lr=initial_lr)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer=optimizer,
mode='min',
factor=0.1,
patience=patience,
cooldown=2 * patience,
min_lr=min_lr,
)
tag = utils.make_train_tag(net_class=net_class,
traindb=train_datasets,
face_policy=face_policy,
patch_size=face_size,
seed=seed,
suffix=suffix,
debug=debug,
)
# Model checkpoint paths
bestval_path = os.path.join(weights_folder, tag, 'bestval.pth')
last_path = os.path.join(weights_folder, tag, 'last.pth')
periodic_path = os.path.join(weights_folder, tag, 'it{:06d}.pth')
os.makedirs(os.path.join(weights_folder, tag), exist_ok=True)
# Load model
val_loss = min_val_loss = 10
epoch = iteration = 0
net_state = None
opt_state = None
if initial_model is not None:
# If given load initial model
print('Loading model form: {}'.format(initial_model))
state = torch.load(initial_model, map_location='cpu')
net_state = state['net']
elif not train_from_scratch and os.path.exists(last_path):
print('Loading model form: {}'.format(last_path))
state = torch.load(last_path, map_location='cpu')
net_state = state['net']
opt_state = state['opt']
iteration = state['iteration'] + 1
epoch = state['epoch']
if not train_from_scratch and os.path.exists(bestval_path):
state = torch.load(bestval_path, map_location='cpu')
min_val_loss = state['val_loss']
if net_state is not None:
incomp_keys = net.load_state_dict(net_state, strict=False)
print(incomp_keys)
if opt_state is not None:
for param_group in opt_state['param_groups']:
param_group['lr'] = initial_lr
optimizer.load_state_dict(opt_state)
# Initialize Tensorboard
logdir = os.path.join(logs_folder, tag)
if iteration == 0:
# If training from scratch or initialization remove history if exists
shutil.rmtree(logdir, ignore_errors=True)
# TensorboardX instance
tb = SummaryWriter(logdir=logdir)
if iteration == 0:
dummy = torch.randn((1, 3, face_size, face_size), device=device)
dummy = dummy.to(device)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
tb.add_graph(net, [dummy, ], verbose=False)
transformer = utils.get_transformer(face_policy=face_policy, patch_size=face_size,
net_normalizer=net.get_normalizer(), train=True)
# Datasets and data loaders
print('Loading data')
# Check if paths for DFDC and FF++ extracted faces and DataFrames are provided
for dataset in train_datasets:
if dataset.split('-')[0] == 'dfdc' and (dfdc_df_path is None or dfdc_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for DFDC faces for training!')
elif dataset.split('-')[0] == 'ff' and (ffpp_df_path is None or ffpp_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for FF++ faces for training!')
for dataset in val_datasets:
if dataset.split('-')[0] == 'dfdc' and (dfdc_df_path is None or dfdc_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for DFDC faces for validation!')
elif dataset.split('-')[0] == 'ff' and (ffpp_df_path is None or ffpp_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for FF++ faces for validation!')
# Load splits with the make_splits function
splits = split.make_splits(dfdc_df=dfdc_df_path, ffpp_df=ffpp_df_path, dfdc_dir=dfdc_faces_dir, ffpp_dir=ffpp_faces_dir,
dbs={'train': train_datasets, 'val': val_datasets})
train_dfs = [splits['train'][db][0] for db in splits['train']]
train_roots = [splits['train'][db][1] for db in splits['train']]
val_roots = [splits['val'][db][1] for db in splits['val']]
val_dfs = [splits['val'][db][0] for db in splits['val']]
train_dataset = FrameFaceIterableDataset(roots=train_roots,
dfs=train_dfs,
scale=face_policy,
num_samples=max_train_samples,
transformer=transformer,
size=face_size,
)
val_dataset = FrameFaceIterableDataset(roots=val_roots,
dfs=val_dfs,
scale=face_policy,
num_samples=max_val_samples,
transformer=transformer,
size=face_size,
)
train_loader = DataLoader(train_dataset, num_workers=num_workers, batch_size=batch_size, )
val_loader = DataLoader(val_dataset, num_workers=num_workers, batch_size=batch_size, )
print('Training samples: {}'.format(len(train_dataset)))
print('Validation samples: {}'.format(len(val_dataset)))
if len(train_dataset) == 0:
print('No training samples. Halt.')
return
if len(val_dataset) == 0:
print('No validation samples. Halt.')
return
stop = False
while not stop:
# Training
optimizer.zero_grad()
train_loss = train_num = 0
train_pred_list = []
train_labels_list = []
for train_batch in tqdm(train_loader, desc='Epoch {:03d}'.format(epoch), leave=False,
total=len(train_loader) // train_loader.batch_size):
net.train()
batch_data, batch_labels = train_batch
train_batch_num = len(batch_labels)
train_num += train_batch_num
train_labels_list.append(batch_labels.numpy().flatten())
train_batch_loss, train_batch_pred = batch_forward(net, device, criterion, batch_data, batch_labels)
train_pred_list.append(train_batch_pred.flatten())
if torch.isnan(train_batch_loss):
raise ValueError('NaN loss')
train_loss += train_batch_loss.item() * train_batch_num
# Optimization
train_batch_loss.backward()
optimizer.step()
optimizer.zero_grad()
# Logging
if iteration > 0 and (iteration % log_interval == 0):
train_loss /= train_num
tb.add_scalar('train/loss', train_loss, iteration)
tb.add_scalar('lr', optimizer.param_groups[0]['lr'], iteration)
tb.add_scalar('epoch', epoch, iteration)
# Checkpoint
save_model(net, optimizer, train_loss, val_loss, iteration, batch_size, epoch, last_path)
train_loss = train_num = 0
# Validation
if iteration > 0 and (iteration % validation_interval == 0):
# Model checkpoint
save_model(net, optimizer, train_loss, val_loss, iteration, batch_size, epoch,
periodic_path.format(iteration))
# Train cumulative stats
train_labels = np.concatenate(train_labels_list)
train_pred = np.concatenate(train_pred_list)
train_labels_list = []
train_pred_list = []
train_roc_auc = roc_auc_score(train_labels, train_pred)
tb.add_scalar('train/roc_auc', train_roc_auc, iteration)
tb.add_pr_curve('train/pr', train_labels, train_pred, iteration)
# Validation
val_loss = validation_routine(net, device, val_loader, criterion, tb, iteration, 'val')
tb.flush()
# LR Scheduler
lr_scheduler.step(val_loss)
# Model checkpoint
if val_loss < min_val_loss:
min_val_loss = val_loss
save_model(net, optimizer, train_loss, val_loss, iteration, batch_size, epoch, bestval_path)
# Attention
if enable_attention and hasattr(net, 'get_attention'):
net.eval()
# For each dataframe show the attention for a real,fake couple of frames
for df, root, sample_idx, tag in [
(train_dfs[0], train_roots[0], train_dfs[0][train_dfs[0]['label'] == False].index[0],
'train/att/real'),
(train_dfs[0], train_roots[0], train_dfs[0][train_dfs[0]['label'] == True].index[0],
'train/att/fake'),
]:
record = df.loc[sample_idx]
tb_attention(tb, tag, iteration, net, device, face_size, face_policy,
transformer, root, record)
if optimizer.param_groups[0]['lr'] == min_lr:
print('Reached minimum learning rate. Stopping.')
stop = True
break
iteration += 1
if iteration > max_num_iterations:
print('Maximum number of iterations reached')
stop = True
break
# End of iteration
epoch += 1
# Needed to flush out last events
tb.close()
print('Completed')
def tb_attention(tb: SummaryWriter,
tag: str,
iteration: int,
net: nn.Module,
device: torch.device,
patch_size_load: int,
face_crop_scale: str,
val_transformer: A.BasicTransform,
root: str,
record: pd.Series,
):
# Crop face
sample_t = load_face(record=record, root=root, size=patch_size_load, scale=face_crop_scale,
transformer=val_transformer)
sample_t_clean = load_face(record=record, root=root, size=patch_size_load, scale=face_crop_scale,
transformer=ToTensorV2())
if torch.cuda.is_available():
sample_t = sample_t.cuda(device)
# Transform
# Feed to net
with torch.no_grad():
att: torch.Tensor = net.get_attention(sample_t.unsqueeze(0))[0].cpu()
att_img: Image.Image = ToPILImage()(att)
sample_img = ToPILImage()(sample_t_clean)
att_img = att_img.resize(sample_img.size, resample=Image.NEAREST).convert('RGB')
sample_att_img = ImageChops.multiply(sample_img, att_img)
sample_att = ToTensor()(sample_att_img)
tb.add_image(tag=tag, img_tensor=sample_att, global_step=iteration)
def batch_forward(net: nn.Module, device: torch.device, criterion, data: torch.Tensor, labels: torch.Tensor) -> (
torch.Tensor, float, int):
data = data.to(device)
labels = labels.to(device)
out = net(data)
pred = torch.sigmoid(out).detach().cpu().numpy()
loss = criterion(out, labels)
return loss, pred
def validation_routine(net, device, val_loader, criterion, tb, iteration, tag: str, loader_len_norm: int = None):
net.eval()
loader_len_norm = loader_len_norm if loader_len_norm is not None else val_loader.batch_size
val_num = 0
val_loss = 0.
pred_list = list()
labels_list = list()
for val_data in tqdm(val_loader, desc='Validation', leave=False, total=len(val_loader) // loader_len_norm):
batch_data, batch_labels = val_data
val_batch_num = len(batch_labels)
labels_list.append(batch_labels.flatten())
with torch.no_grad():
val_batch_loss, val_batch_pred = batch_forward(net, device, criterion, batch_data,
batch_labels)
pred_list.append(val_batch_pred.flatten())
val_num += val_batch_num
val_loss += val_batch_loss.item() * val_batch_num
# Logging
val_loss /= val_num
tb.add_scalar('{}/loss'.format(tag), val_loss, iteration)
if isinstance(criterion, nn.BCEWithLogitsLoss):
val_labels = np.concatenate(labels_list)
val_pred = np.concatenate(pred_list)
val_roc_auc = roc_auc_score(val_labels, val_pred)
tb.add_scalar('{}/roc_auc'.format(tag), val_roc_auc, iteration)
tb.add_pr_curve('{}/pr'.format(tag), val_labels, val_pred, iteration)
return val_loss
def save_model(net: nn.Module, optimizer: optim.Optimizer,
train_loss: float, val_loss: float,
iteration: int, batch_size: int, epoch: int,
path: str):
path = str(path)
state = dict(net=net.state_dict(),
opt=optimizer.state_dict(),
train_loss=train_loss,
val_loss=val_loss,
iteration=iteration,
batch_size=batch_size,
epoch=epoch)
torch.save(state, path)
if __name__ == '__main__':
main()
|