VideoDetection / icpr2020dfdc /extract_faces.py
Mohamed Almukhtar
Duplicate from malmukhtar/ImageDetection
fc3814c
raw
history blame
16.6 kB
"""
Extract faces
Video Face Manipulation Detection Through Ensemble of CNNs
Image and Sound Processing Lab - Politecnico di Milano
Nicolò Bonettini
Edoardo Daniele Cannas
Sara Mandelli
Luca Bondi
Paolo Bestagini
"""
import argparse
import sys
import traceback
from concurrent.futures import ThreadPoolExecutor
from functools import partial
from pathlib import Path
from typing import Tuple, List
import numpy as np
import pandas as pd
import torch
import torch.cuda
from PIL import Image
from tqdm import tqdm
import blazeface
from blazeface import BlazeFace, VideoReader, FaceExtractor
from isplutils.utils import adapt_bb
def parse_args(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--source', type=Path, help='Videos root directory', required=True)
parser.add_argument('--videodf', type=Path, help='Path to read the videos DataFrame', required=True)
parser.add_argument('--facesfolder', type=Path, help='Faces output root directory', required=True)
parser.add_argument('--facesdf', type=Path, help='Path to save the output DataFrame of faces', required=True)
parser.add_argument('--checkpoint', type=Path, help='Path to save the temporary per-video outputs', required=True)
parser.add_argument('--fpv', type=int, default=32, help='Frames per video')
parser.add_argument('--device', type=torch.device,
default=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu'),
help='Device to use for face extraction')
parser.add_argument('--collateonly', help='Only perform collation of pre-existing results', action='store_true')
parser.add_argument('--noindex', help='Do not rebuild the index', action='store_false')
parser.add_argument('--batch', type=int, help='Batch size', default=16)
parser.add_argument('--threads', type=int, help='Number of threads', default=8)
parser.add_argument('--offset', type=int, help='Offset to start extraction', default=0)
parser.add_argument('--num', type=int, help='Number of videos to process', default=0)
parser.add_argument('--lazycheck', action='store_true', help='Lazy check of existing video indexes')
parser.add_argument('--deepcheck', action='store_true', help='Try to open every image')
return parser.parse_args(argv)
def main(argv):
args = parse_args(argv)
## Parameters parsing
device: torch.device = args.device
source_dir: Path = args.source
facedestination_dir: Path = args.facesfolder
frames_per_video: int = args.fpv
videodataset_path: Path = args.videodf
facesdataset_path: Path = args.facesdf
collateonly: bool = args.collateonly
batch_size: int = args.batch
threads: int = args.threads
offset: int = args.offset
num: int = args.num
lazycheck: bool = args.lazycheck
deepcheck: bool = args.deepcheck
checkpoint_folder: Path = args.checkpoint
index_enable: bool = args.noindex
## Parameters
face_size = 512
print('Loading video DataFrame')
df_videos = pd.read_pickle(videodataset_path)
if num > 0:
df_videos_process = df_videos.iloc[offset:offset + num]
else:
df_videos_process = df_videos.iloc[offset:]
if not collateonly:
## Blazeface loading
print('Loading face extractor')
facedet = BlazeFace().to(device)
facedet.load_weights("blazeface/blazeface.pth")
facedet.load_anchors("blazeface/anchors.npy")
videoreader = VideoReader(verbose=False)
video_read_fn = lambda x: videoreader.read_frames(x, num_frames=frames_per_video)
face_extractor = FaceExtractor(video_read_fn, facedet)
## Face extraction
with ThreadPoolExecutor(threads) as p:
for batch_idx0 in tqdm(np.arange(start=0, stop=len(df_videos_process), step=batch_size),
desc='Extracting faces'):
tosave_list = list(p.map(partial(process_video,
source_dir=source_dir,
facedestination_dir=facedestination_dir,
checkpoint_folder=checkpoint_folder,
face_size=face_size,
face_extractor=face_extractor,
lazycheck=lazycheck,
deepcheck=deepcheck,
),
df_videos_process.iloc[batch_idx0:batch_idx0 + batch_size].iterrows()))
for tosave in tosave_list:
if tosave is not None:
if len(tosave[2]):
list(p.map(save_jpg, tosave[2]))
tosave[1].parent.mkdir(parents=True, exist_ok=True)
tosave[0].to_pickle(str(tosave[1]))
if index_enable:
# Collect checkpoints
df_videos['nfaces'] = np.zeros(len(df_videos), np.uint8)
faces_dataset = []
for idx, record in tqdm(df_videos.iterrows(), total=len(df_videos), desc='Collecting faces results'):
# Checkpoint
video_face_checkpoint_path = checkpoint_folder.joinpath(record['path']).with_suffix('.faces.pkl')
if video_face_checkpoint_path.exists():
try:
df_video_faces = pd.read_pickle(str(video_face_checkpoint_path))
# Fix same attribute issue
df_video_faces = df_video_faces.rename(columns={'subject': 'videosubject'}, errors='ignore')
nfaces = len(
np.unique(df_video_faces.index.map(lambda x: int(x.split('_subj')[1].split('.jpg')[0]))))
df_videos.loc[idx, 'nfaces'] = nfaces
faces_dataset.append(df_video_faces)
except Exception as e:
print('Error while reading: {}'.format(video_face_checkpoint_path))
print(e)
video_face_checkpoint_path.unlink()
if len(faces_dataset) == 0:
raise ValueError(f'No checkpoint found from face extraction. '
f'Is the the source path {source_dir} correct for the videos in your dataframe?')
# Save videos with updated faces
print('Saving videos DataFrame to {}'.format(videodataset_path))
df_videos.to_pickle(str(videodataset_path))
if offset > 0:
if num > 0:
if facesdataset_path.is_dir():
facesdataset_path = facesdataset_path.joinpath(
'faces_df_from_video_{}_to_video_{}.pkl'.format(offset, num + offset))
else:
facesdataset_path = facesdataset_path.parent.joinpath(
str(facesdataset_path.parts[-1]).split('.')[0] + '_from_video_{}_to_video_{}.pkl'.format(offset,
num + offset))
else:
if facesdataset_path.is_dir():
facesdataset_path = facesdataset_path.joinpath('faces_df_from_video_{}.pkl'.format(offset))
else:
facesdataset_path = facesdataset_path.parent.joinpath(
str(facesdataset_path.parts[-1]).split('.')[0] + '_from_video_{}.pkl'.format(offset))
elif num > 0:
if facesdataset_path.is_dir():
facesdataset_path = facesdataset_path.joinpath(
'faces_df_from_video_{}_to_video_{}.pkl'.format(0, num))
else:
facesdataset_path = facesdataset_path.parent.joinpath(
str(facesdataset_path.parts[-1]).split('.')[0] + '_from_video_{}_to_video_{}.pkl'.format(0, num))
else:
if facesdataset_path.is_dir():
facesdataset_path = facesdataset_path.joinpath('faces_df.pkl') # just a check if the path is a dir
# Creates directory (if doesn't exist)
facesdataset_path.parent.mkdir(parents=True, exist_ok=True)
print('Saving faces DataFrame to {}'.format(facesdataset_path))
df_faces = pd.concat(faces_dataset, axis=0, )
df_faces['video'] = df_faces['video'].astype('category')
for key in ['kp1x', 'kp1y', 'kp2x', 'kp2y', 'kp3x',
'kp3y', 'kp4x', 'kp4y', 'kp5x', 'kp5y', 'kp6x', 'kp6y', 'left',
'top', 'right', 'bottom', ]:
df_faces[key] = df_faces[key].astype(np.int16)
df_faces['videosubject'] = df_faces['videosubject'].astype(np.int8)
# Eventually remove duplicates
df_faces = df_faces.loc[~df_faces.index.duplicated(keep='first')]
fields_to_preserve_from_video = [i for i in
['folder', 'subject', 'scene', 'cluster', 'nfaces', 'test'] if
i in df_videos]
df_faces = pd.merge(df_faces, df_videos[fields_to_preserve_from_video], left_on='video',
right_index=True)
df_faces.to_pickle(str(facesdataset_path))
print('Completed!')
def save_jpg(args: Tuple[Image.Image, Path or str]):
image, path = args
image.save(path, quality=95, subsampling='4:4:4')
def process_video(item: Tuple[pd.Index, pd.Series],
source_dir: Path,
facedestination_dir: Path,
checkpoint_folder: Path,
face_size: int,
face_extractor: FaceExtractor,
lazycheck: bool = False,
deepcheck: bool = False,
) -> (pd.DataFrame, Path, List[Tuple[Image.Image, Path]]) or None:
# Instatiate Index and Series
idx, record = item
# Checkpoint
video_faces_checkpoint_path = checkpoint_folder.joinpath(record['path']).with_suffix('.faces.pkl')
if not lazycheck:
if video_faces_checkpoint_path.exists():
try:
df_video_faces = pd.read_pickle(str(video_faces_checkpoint_path))
for _, r in df_video_faces.iterrows():
face_path = facedestination_dir.joinpath(r.name)
assert (face_path.exists())
if deepcheck:
img = Image.open(face_path)
img_arr = np.asarray(img)
assert (img_arr.ndim == 3)
assert (np.prod(img_arr.shape) > 0)
except Exception as e:
print('Error while checking: {}'.format(video_faces_checkpoint_path))
print(e)
video_faces_checkpoint_path.unlink()
if not (video_faces_checkpoint_path.exists()):
try:
video_face_dict_list = []
# Load faces
current_video_path = source_dir.joinpath(record['path'])
if not current_video_path.exists():
raise FileNotFoundError(f'Unable to find {current_video_path}.'
f'Are you sure that {source_dir} is the correct source directory for the video '
f'you indexed in the dataframe?')
frames = face_extractor.process_video(current_video_path)
if len(frames) == 0:
return
face_extractor.keep_only_best_face(frames)
for frame_idx, frame in enumerate(frames):
frames[frame_idx]['subjects'] = [0] * len(frames[frame_idx]['detections'])
# Extract and save faces, bounding boxes, keypoints
images_to_save: List[Tuple[Image.Image, Path]] = []
for frame_idx, frame in enumerate(frames):
if len(frames[frame_idx]['detections']):
fullframe = Image.fromarray(frames[frame_idx]['frame'])
# Preserve the only found face even if not a good one, otherwise preserve only clusters > -1
subjects = np.unique(frames[frame_idx]['subjects'])
if len(subjects) > 1:
subjects = np.asarray([s for s in subjects if s > -1])
for face_idx, _ in enumerate(frame['faces']):
subj_id = frames[frame_idx]['subjects'][face_idx]
if subj_id in subjects: # Exclude outliers if other faces detected
face_path = facedestination_dir.joinpath(record['path'], 'fr{:03d}_subj{:1d}.jpg'.format(
frames[frame_idx]['frame_idx'], subj_id))
face_dict = {'facepath': str(face_path.relative_to(facedestination_dir)), 'video': idx,
'label': record['label'], 'videosubject': subj_id,
'original': record['original']}
# add attibutes for ff++
if 'class' in record.keys():
face_dict.update({'class': record['class']})
if 'source' in record.keys():
face_dict.update({'source': record['source']})
if 'quality' in record.keys():
face_dict.update({'quality': record['quality']})
for field_idx, key in enumerate(blazeface.BlazeFace.detection_keys):
face_dict[key] = frames[frame_idx]['detections'][face_idx][field_idx]
cropping_bb = adapt_bb(frame_height=fullframe.height,
frame_width=fullframe.width,
bb_height=face_size,
bb_width=face_size,
left=face_dict['xmin'],
top=face_dict['ymin'],
right=face_dict['xmax'],
bottom=face_dict['ymax'])
face = fullframe.crop(cropping_bb)
for key in blazeface.BlazeFace.detection_keys:
if (key[0] == 'k' and key[-1] == 'x') or (key[0] == 'x'):
face_dict[key] -= cropping_bb[0]
elif (key[0] == 'k' and key[-1] == 'y') or (key[0] == 'y'):
face_dict[key] -= cropping_bb[1]
face_dict['left'] = face_dict.pop('xmin')
face_dict['top'] = face_dict.pop('ymin')
face_dict['right'] = face_dict.pop('xmax')
face_dict['bottom'] = face_dict.pop('ymax')
face_path.parent.mkdir(parents=True, exist_ok=True)
images_to_save.append((face, face_path))
video_face_dict_list.append(face_dict)
if len(video_face_dict_list) > 0:
df_video_faces = pd.DataFrame(video_face_dict_list)
df_video_faces.index = df_video_faces['facepath']
del df_video_faces['facepath']
# type conversions
for key in ['kp1x', 'kp1y', 'kp2x', 'kp2y', 'kp3x', 'kp3y',
'kp4x', 'kp4y', 'kp5x', 'kp5y', 'kp6x', 'kp6y', 'left', 'top',
'right', 'bottom']:
df_video_faces[key] = df_video_faces[key].astype(np.int16)
df_video_faces['conf'] = df_video_faces['conf'].astype(np.float32)
df_video_faces['video'] = df_video_faces['video'].astype('category')
video_faces_checkpoint_path.parent.mkdir(parents=True, exist_ok=True)
else:
print('No faces extracted for video {}'.format(record['path']))
df_video_faces = pd.DataFrame()
return df_video_faces, video_faces_checkpoint_path, images_to_save
except Exception as e:
print('Error while processing: {}'.format(record['path']))
print("-" * 60)
traceback.print_exc(file=sys.stdout, limit=5)
print("-" * 60)
return
if __name__ == '__main__':
main(sys.argv[1:])