Mohamed Almukhtar
Duplicate from malmukhtar/ImageDetection
fc3814c
raw
history blame
16.1 kB
from typing import List
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class BlazeBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1):
super(BlazeBlock, self).__init__()
self.stride = stride
self.channel_pad = out_channels - in_channels
# TFLite uses slightly different padding than PyTorch
# on the depthwise conv layer when the stride is 2.
if stride == 2:
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
padding = 0
else:
padding = (kernel_size - 1) // 2
self.convs = nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=in_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
groups=in_channels, bias=True),
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=1, stride=1, padding=0, bias=True),
)
self.act = nn.ReLU(inplace=True)
def forward(self, x):
if self.stride == 2:
h = F.pad(x, (0, 2, 0, 2), "constant", 0)
x = self.max_pool(x)
else:
h = x
if self.channel_pad > 0:
x = F.pad(x, (0, 0, 0, 0, 0, self.channel_pad), "constant", 0)
return self.act(self.convs(h) + x)
class BlazeFace(nn.Module):
"""The BlazeFace face detection model from MediaPipe.
The version from MediaPipe is simpler than the one in the paper;
it does not use the "double" BlazeBlocks.
Because we won't be training this model, it doesn't need to have
batchnorm layers. These have already been "folded" into the conv
weights by TFLite.
The conversion to PyTorch is fairly straightforward, but there are
some small differences between TFLite and PyTorch in how they handle
padding on conv layers with stride 2.
This version works on batches, while the MediaPipe version can only
handle a single image at a time.
Based on code from https://github.com/tkat0/PyTorch_BlazeFace/ and
https://github.com/google/mediapipe/
"""
input_size = (128, 128)
detection_keys = [
'ymin', 'xmin', 'ymax', 'xmax',
'kp1x', 'kp1y', 'kp2x', 'kp2y', 'kp3x', 'kp3y', 'kp4x', 'kp4y', 'kp5x', 'kp5y', 'kp6x', 'kp6y',
'conf'
]
def __init__(self):
super(BlazeFace, self).__init__()
# These are the settings from the MediaPipe example graph
# mediapipe/graphs/face_detection/face_detection_mobile_gpu.pbtxt
self.num_classes = 1
self.num_anchors = 896
self.num_coords = 16
self.score_clipping_thresh = 100.0
self.x_scale = 128.0
self.y_scale = 128.0
self.h_scale = 128.0
self.w_scale = 128.0
self.min_score_thresh = 0.75
self.min_suppression_threshold = 0.3
self._define_layers()
def _define_layers(self):
self.backbone1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=24, kernel_size=5, stride=2, padding=0, bias=True),
nn.ReLU(inplace=True),
BlazeBlock(24, 24),
BlazeBlock(24, 28),
BlazeBlock(28, 32, stride=2),
BlazeBlock(32, 36),
BlazeBlock(36, 42),
BlazeBlock(42, 48, stride=2),
BlazeBlock(48, 56),
BlazeBlock(56, 64),
BlazeBlock(64, 72),
BlazeBlock(72, 80),
BlazeBlock(80, 88),
)
self.backbone2 = nn.Sequential(
BlazeBlock(88, 96, stride=2),
BlazeBlock(96, 96),
BlazeBlock(96, 96),
BlazeBlock(96, 96),
BlazeBlock(96, 96),
)
self.classifier_8 = nn.Conv2d(88, 2, 1, bias=True)
self.classifier_16 = nn.Conv2d(96, 6, 1, bias=True)
self.regressor_8 = nn.Conv2d(88, 32, 1, bias=True)
self.regressor_16 = nn.Conv2d(96, 96, 1, bias=True)
def forward(self, x):
# TFLite uses slightly different padding on the first conv layer
# than PyTorch, so do it manually.
x = F.pad(x, (1, 2, 1, 2), "constant", 0)
b = x.shape[0] # batch size, needed for reshaping later
x = self.backbone1(x) # (b, 88, 16, 16)
h = self.backbone2(x) # (b, 96, 8, 8)
# Note: Because PyTorch is NCHW but TFLite is NHWC, we need to
# permute the output from the conv layers before reshaping it.
c1 = self.classifier_8(x) # (b, 2, 16, 16)
c1 = c1.permute(0, 2, 3, 1) # (b, 16, 16, 2)
c1 = c1.reshape(b, -1, 1) # (b, 512, 1)
c2 = self.classifier_16(h) # (b, 6, 8, 8)
c2 = c2.permute(0, 2, 3, 1) # (b, 8, 8, 6)
c2 = c2.reshape(b, -1, 1) # (b, 384, 1)
c = torch.cat((c1, c2), dim=1) # (b, 896, 1)
r1 = self.regressor_8(x) # (b, 32, 16, 16)
r1 = r1.permute(0, 2, 3, 1) # (b, 16, 16, 32)
r1 = r1.reshape(b, -1, 16) # (b, 512, 16)
r2 = self.regressor_16(h) # (b, 96, 8, 8)
r2 = r2.permute(0, 2, 3, 1) # (b, 8, 8, 96)
r2 = r2.reshape(b, -1, 16) # (b, 384, 16)
r = torch.cat((r1, r2), dim=1) # (b, 896, 16)
return [r, c]
def _device(self):
"""Which device (CPU or GPU) is being used by this model?"""
return self.classifier_8.weight.device
def load_weights(self, path):
self.load_state_dict(torch.load(path))
self.eval()
def load_anchors(self, path):
self.anchors = torch.tensor(np.load(path), dtype=torch.float32, device=self._device())
assert (self.anchors.ndimension() == 2)
assert (self.anchors.shape[0] == self.num_anchors)
assert (self.anchors.shape[1] == 4)
def _preprocess(self, x):
"""Converts the image pixels to the range [-1, 1]."""
return x.float() / 127.5 - 1.0
def predict_on_image(self, img):
"""Makes a prediction on a single image.
Arguments:
img: a NumPy array of shape (H, W, 3) or a PyTorch tensor of
shape (3, H, W). The image's height and width should be
128 pixels.
Returns:
A tensor with face detections.
"""
if isinstance(img, np.ndarray):
img = torch.from_numpy(img).permute((2, 0, 1))
return self.predict_on_batch(img.unsqueeze(0))[0]
def predict_on_batch(self, x: np.ndarray or torch.Tensor, apply_nms: bool = True) -> List[torch.Tensor]:
"""Makes a prediction on a batch of images.
Arguments:
x: a NumPy array of shape (b, H, W, 3) or a PyTorch tensor of
shape (b, 3, H, W). The height and width should be 128 pixels.
apply_nms: pass False to not apply non-max suppression
Returns:
A list containing a tensor of face detections for each image in
the batch. If no faces are found for an image, returns a tensor
of shape (0, 17).
Each face detection is a PyTorch tensor consisting of 17 numbers:
- ymin, xmin, ymax, xmax
- x,y-coordinates for the 6 keypoints
- confidence score
"""
if isinstance(x, np.ndarray):
x = torch.from_numpy(x).permute((0, 3, 1, 2))
assert x.shape[1] == 3
assert x.shape[2] == 128
assert x.shape[3] == 128
# 1. Preprocess the images into tensors:
x = x.to(self._device())
x = self._preprocess(x)
# 2. Run the neural network:
with torch.no_grad():
out: torch.Tensor = self.__call__(x)
# 3. Postprocess the raw predictions:
detections = self._tensors_to_detections(out[0], out[1], self.anchors)
# 4. Non-maximum suppression to remove overlapping detections:
return self.nms(detections) if apply_nms else detections
def nms(self, detections: List[torch.Tensor]) -> List[torch.Tensor]:
"""Filters out overlapping detections."""
filtered_detections = []
for i in range(len(detections)):
faces = self._weighted_non_max_suppression(detections[i])
faces = torch.stack(faces) if len(faces) > 0 else torch.zeros((0, 17), device=self._device())
filtered_detections.append(faces)
return filtered_detections
def _tensors_to_detections(self, raw_box_tensor: torch.Tensor, raw_score_tensor: torch.Tensor, anchors) -> List[
torch.Tensor]:
"""The output of the neural network is a tensor of shape (b, 896, 16)
containing the bounding box regressor predictions, as well as a tensor
of shape (b, 896, 1) with the classification confidences.
This function converts these two "raw" tensors into proper detections.
Returns a list of (num_detections, 17) tensors, one for each image in
the batch.
This is based on the source code from:
mediapipe/calculators/tflite/tflite_tensors_to_detections_calculator.cc
mediapipe/calculators/tflite/tflite_tensors_to_detections_calculator.proto
"""
assert raw_box_tensor.ndimension() == 3
assert raw_box_tensor.shape[1] == self.num_anchors
assert raw_box_tensor.shape[2] == self.num_coords
assert raw_score_tensor.ndimension() == 3
assert raw_score_tensor.shape[1] == self.num_anchors
assert raw_score_tensor.shape[2] == self.num_classes
assert raw_box_tensor.shape[0] == raw_score_tensor.shape[0]
detection_boxes = self._decode_boxes(raw_box_tensor, anchors)
thresh = self.score_clipping_thresh
raw_score_tensor = raw_score_tensor.clamp(-thresh, thresh)
detection_scores = raw_score_tensor.sigmoid().squeeze(dim=-1)
# Note: we stripped off the last dimension from the scores tensor
# because there is only has one class. Now we can simply use a mask
# to filter out the boxes with too low confidence.
mask = detection_scores >= self.min_score_thresh
# Because each image from the batch can have a different number of
# detections, process them one at a time using a loop.
output_detections = []
for i in range(raw_box_tensor.shape[0]):
boxes = detection_boxes[i, mask[i]]
scores = detection_scores[i, mask[i]].unsqueeze(dim=-1)
output_detections.append(torch.cat((boxes, scores), dim=-1))
return output_detections
def _decode_boxes(self, raw_boxes, anchors):
"""Converts the predictions into actual coordinates using
the anchor boxes. Processes the entire batch at once.
"""
boxes = torch.zeros_like(raw_boxes)
x_center = raw_boxes[..., 0] / self.x_scale * anchors[:, 2] + anchors[:, 0]
y_center = raw_boxes[..., 1] / self.y_scale * anchors[:, 3] + anchors[:, 1]
w = raw_boxes[..., 2] / self.w_scale * anchors[:, 2]
h = raw_boxes[..., 3] / self.h_scale * anchors[:, 3]
boxes[..., 0] = y_center - h / 2. # ymin
boxes[..., 1] = x_center - w / 2. # xmin
boxes[..., 2] = y_center + h / 2. # ymax
boxes[..., 3] = x_center + w / 2. # xmax
for k in range(6):
offset = 4 + k * 2
keypoint_x = raw_boxes[..., offset] / self.x_scale * anchors[:, 2] + anchors[:, 0]
keypoint_y = raw_boxes[..., offset + 1] / self.y_scale * anchors[:, 3] + anchors[:, 1]
boxes[..., offset] = keypoint_x
boxes[..., offset + 1] = keypoint_y
return boxes
def _weighted_non_max_suppression(self, detections):
"""The alternative NMS method as mentioned in the BlazeFace paper:
"We replace the suppression algorithm with a blending strategy that
estimates the regression parameters of a bounding box as a weighted
mean between the overlapping predictions."
The original MediaPipe code assigns the score of the most confident
detection to the weighted detection, but we take the average score
of the overlapping detections.
The input detections should be a Tensor of shape (count, 17).
Returns a list of PyTorch tensors, one for each detected face.
This is based on the source code from:
mediapipe/calculators/util/non_max_suppression_calculator.cc
mediapipe/calculators/util/non_max_suppression_calculator.proto
"""
if len(detections) == 0: return []
output_detections = []
# Sort the detections from highest to lowest score.
remaining = torch.argsort(detections[:, 16], descending=True)
while len(remaining) > 0:
detection = detections[remaining[0]]
# Compute the overlap between the first box and the other
# remaining boxes. (Note that the other_boxes also include
# the first_box.)
first_box = detection[:4]
other_boxes = detections[remaining, :4]
ious = overlap_similarity(first_box, other_boxes)
# If two detections don't overlap enough, they are considered
# to be from different faces.
mask = ious > self.min_suppression_threshold
overlapping = remaining[mask]
remaining = remaining[~mask]
# Take an average of the coordinates from the overlapping
# detections, weighted by their confidence scores.
weighted_detection = detection.clone()
if len(overlapping) > 1:
coordinates = detections[overlapping, :16]
scores = detections[overlapping, 16:17]
total_score = scores.sum()
weighted = (coordinates * scores).sum(dim=0) / total_score
weighted_detection[:16] = weighted
weighted_detection[16] = total_score / len(overlapping)
output_detections.append(weighted_detection)
return output_detections
# IOU code from https://github.com/amdegroot/ssd.pytorch/blob/master/layers/box_utils.py
def intersect(box_a, box_b):
""" We resize both tensors to [A,B,2] without new malloc:
[A,2] -> [A,1,2] -> [A,B,2]
[B,2] -> [1,B,2] -> [A,B,2]
Then we compute the area of intersect between box_a and box_b.
Args:
box_a: (tensor) bounding boxes, Shape: [A,4].
box_b: (tensor) bounding boxes, Shape: [B,4].
Return:
(tensor) intersection area, Shape: [A,B].
"""
A = box_a.size(0)
B = box_b.size(0)
max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
box_b[:, :2].unsqueeze(0).expand(A, B, 2))
inter = torch.clamp((max_xy - min_xy), min=0)
return inter[:, :, 0] * inter[:, :, 1]
def jaccard(box_a, box_b):
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
is simply the intersection over union of two boxes. Here we operate on
ground truth boxes and default boxes.
E.g.:
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
Args:
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
Return:
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
"""
inter = intersect(box_a, box_b)
area_a = ((box_a[:, 2] - box_a[:, 0]) *
(box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
area_b = ((box_b[:, 2] - box_b[:, 0]) *
(box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
union = area_a + area_b - inter
return inter / union # [A,B]
def overlap_similarity(box, other_boxes):
"""Computes the IOU between a bounding box and set of other boxes."""
return jaccard(box.unsqueeze(0), other_boxes).squeeze(0)